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Abstract
Influenza has been, and continues to be, a significant source of disease burden

worldwide. Regular epidemics and sporadic pandemics are incredibly costly to soci-
ety, not just in terms of the monetary expense of prevention and treatment, but also in
terms of reduced productivity, increased absenteeism, and excessive morbidity and
mortality. Major obstacles to mitigating these costs include an incomplete under-
standing of influenza’s phylodynamics, the inherent delays of clinical surveillance
and reporting, and a lack of outbreak forewarning.

The aim of this thesis is to address each of these obstacles computationally by
(1) simulating transmission and evolution of influenza to explore the interplay be-
tween human immunity and viral evolution; (2) collecting and integrating a diverse
set of real-time digital surveillance signals to track influenza activity; and (3) gener-
ating season-wide forecasts of influenza epidemics using an ensemble of statistical
models, simulations, and human judgment.

The first part explores the concept of generalized immunity, which was previ-
ously hypothesized to be highly protective but short-lasting. Large-scale, long-term
simulations based on an extension of an earlier model were used to scan immu-
nity parameter space and indicate that the most plausible definition of generalized
immunity is less protective but potentially much longer-lasting than previously as-
sumed. The second part describes how sensor fusion and tracking can be applied
to the nowcasting problem. Drawing from control theory, weather forecasting, and
econometrics, an optimal filtering methodology is developed to integrate a set of
proxies for influenza activity which share one common property: they are available
online and in real-time. Otherwise, they are available at different temporal intervals,
geographic resolutions, and historical periods, and they are noisy and potentially
correlated. The resulting nowcasts are robust to failure of individual proxies and are
available up to several weeks before traditional surveillance reports. The third part
combines earlier results with novel methodologies to produce probabilistic forecasts
of influenza spread and intensity that are timely, accurate, and actionable. In partic-
ular, an empirical Bayes method and spline regression are used to produce forecasts
which only rely on the availability of historical data and are readily generalizable to
other infectious diseases; and a wisdom of crowds approach is used to incorporate
human judgment into the forecasting process.
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Chapter 1

Introduction

We have grown accustomed to the
wonders of clean water, indoor plumbing,
laser surgery, genetic engineering,
artificial joints, replacement body parts,
and the much longer lives that accompany
them. Yet we should remember that the
vast majority of humans ever born died
before the age of 10 from an infectious
disease.

Stuart Jay Olshansky

1.1 Motivation
Disease is an unfortunate reality of our biological existence. The burden it places collectively
on humanity is tremendous, and the cost of disease—measured in terms of economic impact,
disability-adjusted life years, and years of life lost—is staggering. In the 1993 World Develop-
ment Report, it was estimated that on the order of 40% of the total disease burden is attributable
to infectious diseases [1]. This figure is unsettlingly high given the tremendous advances made
towards the control and prevention of infectious diseases through the scientific and industrial
revolutions.

The effects of such advances are exemplified by the rapid decline in infectious disease mor-
tality in the United States of America (US) during the early 20th century [2]. That such a decline
took place is probably unsurprising since improvements in hygiene, education, and technology
are associated with a reduction in disease burden [3]. But what is surprising is that in spite of
continued advances across a variety of fields, the rate of infectious disease mortality in the US
has not fallen since around the 1960s—in fact, it has been rising since the 1980s [4].

One of the most ubiquitous infectious diseases in modern society is influenza (flu), the condi-
tion resulting from infection by the Influenzavirus genera of the Orthomyxoviridae virus family.
Flu has been, and continues to be, a pestilence on humanity, and it is conservatively estimated
that 10% of the global population will be infected—every year [5]. Such widespread infection
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results in an estimated 250,000 annual flu-related deaths globally [6]. This is due in no small part
to the fact that we have, so far, been unable to produce a flu vaccine with broad, effective, and
lasting protection—though progress is being made [7]. Current flu vaccines are redesigned each
year out of necessity and generally only provide partial and temporary protection, and that only
for a small selection of circulating strains [8]. New strains of flu arise with alarming regularity,
and the threat of the next global pandemic is ever present, if not imminent [9, 10].

Fortunately, in our present situation, there is room for improvement. Through the recent
digital revolution, and its even more recent product, the information revolution, we have acquired
a set of complementary and extremely powerful tools: computation and data. In this thesis I
use computer science, machine learning, and statistics to tackle some of the biggest obstacles
hindering progress in developing a better understanding of, in preparing for, and in mitigating
the effects of flu and other infectious diseases.

1.2 Background

1.2.1 Virology and Pathogenicity

The virology of influenza is fascinating, having a certain quality of deadly elegance. I summarize
the salient points here, but I refer the interested reader to the book Fields Virology for a more
thorough treatment of the subject [11].

Influenza is a segmented, enveloped virus, whose genetic information is stored in the form
of ribonucleic acid (RNA). There are several types of influenza, and of these, humans are a
natural reservoir for types A and B. These two types share many common properties, but all
known pandemics to date, and the worst seasonal epidemics, are caused by type A, and so for the
remainder of this thesis I focus primarily on this type. The 13.5 kilobase genome of Influenza A
virus (IAV) is made up of eight distinct segments of RNA, each encoding one or more proteins
required for infection and replication. The most important segments for this thesis are those
which encode the proteins Hemagglutinin (HA) and Neuraminidase (NA). Both of these proteins
are present on the surface of the virion, and together they provide a molecular signature that is
recognizable by the human immune system.

In humans, influenza infects epithelial cells of the upper and lower respiratory system, most
often causing symptoms of fever and cough. In fact these symptoms (fever of at least 100 ◦F with
cough and/or sore throat, without a known cause other than influenza) are what is defined by the
US Centers for Disease Control and Prevention (CDC) and by the World Health Organization
(WHO) as influenza-like illness (ILI) [12, 13].

Influenza has several properties that make it a particularly insidious pathogen. Foremost
among these properties is its RNA—as opposed to deoxyribonucleic acid (DNA)—genome. To
understand why this is of concern, it is necessary to understand a little bit about the biologi-
cal process of genomic replication. At the most basic level, the same molecular machinery is
required to replicate either form of nucleic acid. As with all biological processes, mistakes, how-
ever rare, are possible and do occasionally occur. Fortunately for DNA-based lifeforms, like us,
the machinery for replicating DNA is quite sophisticated, containing stringent quality control
checks and error-correcting capabilities. This level of sophistication is generally absent in the
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more primitive RNA-based lifeforms, including influenza and many other viruses. The result
is that errors in replication, called mutations, accumulate much more rapidly in RNA-based life
(roughly 10−5 mutations per nucleotide per replication) than in DNA-based life (roughly 10−9

mutations per nucleotide per replication) [14]. Although mutations are usually deleterious, they
may occasionally be beneficial. For the case in point, mutations in the influenza genome could
potentially obscure the molecular signature of the virus, hindering recognition by a host’s im-
mune system. In this context, the process of continual mutation over time is known as antigenic
drift, and it is the source from which new strains of influenza continually arise. More generally,
the gradual accumulation of mutations throughout the entire genome (as opposed to just regions
encoding epitopes) is termed genetic drift.

Another property of influenza is that its genome is segmented. In the event of coinfection—
a cell being infected with two or more different strains—it is possible that new virions could
emerge containing a genetic mixture of the infecting strains. This process is called reassortment,
and it is the way in which pandemic strains arise. A novel influenza virus carrying a mixture of
genes from a distinct set of parent strains has the potential to be almost completely unrecogniz-
able to the immune system—an antigenic shift.

Finally, influenza is capable of direct airborne transmission—even before the first symptoms
appear [15]. As a result, influenza can be extremely contagious and can rapidly spread through-
out a population. With the relatively recent advent of human air travel, and given the increasingly
interconnected global population, influenza has the potential now to spread throughout the world
in record time. For these reasons, influenza—in both epidemic and pandemic forms—is a per-
sistent and increasingly serious threat, globally.

1.2.2 Epidemiological Surveillance
For over a century, records have been kept that describe influenza case counts and mortality in
the US. Historically, this data was collected and distributed by independently acting government
and health departments. As a result of differences in reporting practices and case definitions, this
data can be difficult to aggregate on a national level. Although the case definitions have been
refined and new technologies allow for rapid and accurate diagnosis, there are still differences
in reporting across the US. This is due at least in part to the fact that influenza is in general not
a nationally notifiable disease—although some specific forms, such as novel antigenic types and
cases of pediatric mortality, must be reported. There has been, however, a push in the last two
decades to standardize and incentivize influenza reporting through the US Outpatient Influenza-
like Illness Surveillance Network (ILINet).

Started in 1997, ILINet is a system run by the National Center for Immunization and Respi-
ratory Diseases (NCIRD) branch of the CDC which collects influenza data on a volunteer basis
from health care providers throughout the country. Each week, these providers report, among
other things, the total number of patients seen and the fraction of those which had symptoms of
ILI. The percent of ILI cases out of total cases gives a number called %ILI (or, simply “ILI”; al-
though this usage is somewhat ambiguous as “ILI” is also the acronym of the clinical definition).
CDC collects these reports from all states and publishes %ILI aggregated across broad regions of
the country [16]. Because participation in ILINet varies greatly between states, CDC normalizes
the data when aggregating across regions; the result is called weighted %ILI (%wILI, or sim-
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ply “wILI”). wILI—the percent of ILI cases out of total cases, weighted by state population—is
made available in the nine census regions, the ten Health and Human Services (HHS) regions,
and for the US as a whole.

Participation in ILINet, which is entirely voluntary, was relatively low in the first several
years. As a result, these first seasons are especially noisy (particularly in the smaller regions),
and data is missing for weeks outside of the official flu season. In the US, epidemiological weeks,
which I refer to as “epiweeks”, traditionally follow the Morbidity and Mortality Weekly Report
(MMWR) week numbering definition [17]—weeks start on Sunday, and the week containing
January 4th is the first week of the year. The flu season is officially defined as epiweeks 40
through 20, roughly spanning October to May of adjacent calendar years. The “on-season”
describes this set of weeks, and CDC reports wILI during the on-season throughout all the years
of ILINet’s existence (since 1997). The “off-season” (alternatively, the “pre-season”) is defined
by the remaining weeks; epiweeks 21–39, or roughly June through September. As previously
mentioned, wILI was initially unavailable during the off-season; however, starting in 2003, and
continuing through the present, wILI is available on all weeks of the year.

While ILINet represents a significant improvement in the surveillance of influenza, there are
some caveats that should be mentioned. First, there is an inherent one, and sometimes two, week
delay between patient care and publication of wILI. This is to be expected because it takes time
and human effort to collect and report these statistics—and this is on a volunteer basis. Second,
previously published values of wILI are revised over time as new reports are gathered—a process
known as “backfill”. This, too, is to be expected; providers are asked to report their case counts
within a few days, but understandably, delays arise from time to time. As a result, wILI on
any given week is subject to change in reports published on subsequent weeks. Third, ILI is a
broad syndromic definition which often includes non-influenza infections that cause influenza-
like symptoms. Even with these shortcomings, wILI is a very useful signal for epidemiological
surveillance and is often considered to be the “gold standard” indicator of flu activity in the US.

1.3 Overview

1.3.1 Thesis statement
Within this thesis, I explore the following question: what about influenza, and infectious dis-
eases in general, can we learn with what’s available now to minimize the impact of impending
outbreaks? In light of this, my thesis can be summarized thusly:

With the computational tools and varied datasets currently available, we can better
understand the role of human immunity in shaping viral evolution, estimate disease
incidence in real-time, and predict the trajectory of disease outbreaks.

1.3.2 Scope
Influenza is far from alone in causing human disease. While the methods developed in this thesis
are inspired by, and specifically attempt to address, the challenges associated with influenza,
they are readily generalizable to other viruses, diseases, and domains. As a demonstration of the
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general applicability of these methods, I provide case studies for two other diseases: dengue and
chikungunya. Like flu, both of these diseases are caused by RNA viruses; but unlike flu, they are
spread by mosquitoes, and hence their geographic distribution is somewhat limited.

My methodology—simulation, assimilation, regression, extrapolation, and more—is inher-
ently computational. It follows then that it is also data-dependent. Infectious disease surveillance
is not a new development, but it has often been sporadic, coarse-grained, and non-standardized.
Flu is a disease for which a we have the rare luxury of having (relatively) historically-rich, high-
resolution, and well-defined datasets. Still, each of these alone is far from ideal, and a recurring
theme throughout this thesis is to make best use of a combination of any and all available sources
of information.

This thesis is primarily a showcase of the work I have done over the last several years, but as
in all scientific endeavors, nothing has been done entirely in isolation. I have worked with many
mentors, peers, and collaborators, and it is probably impossible to find a project that I completed
entirely by myself. There are many projects that I would like to cover in this thesis, but I limit
myself only to those for which I have been the primary contributor. Sometimes, however, it is
necessary to frame my projects within the context of other projects in which I have been only
tangentially involved with. As these cases arise, I make clear the extent of my contribution.

1.3.3 Approach
I begin with a broad overview in Chapter 2 of the work related to these topics. This chapter is
broken into a review, which serves the dual purpose of initiating the reader and contextualizing
the work in this thesis, and an explanation of how subsequent chapters expand on these prior
works.

In Chapter 3 I explore the interplay between human immunity and influenza’s evolution. Al-
though the exact mechanisms of the immune response against influenza remain unclear, I show
that an individual-based model of influenza’s transmission and evolution can be used to infer
some of the missing details. More specifically, I characterize the likelihood of immunity param-
eter space, given simulated outcomes and a set of epidemiological and phylogenetic measures
for which we have strong empirical evidence.

In Chapter 4 I consider the problem of “nowcasting”—estimating disease incidence in real-
time. I begin by describing the problems associated with authoritative datasets and consider
an alternative definition of ground truth. Next, I review the available ILI proxies, which consist
largely of novel and nontraditional signals collectively referred to as digital surveillance. Starting
with a well-known method in control theory—the Kalman filter—I derive an adaptive method of
sensor fusion and apply this methodology to nowcast influenza incidence throughout the US.

In Chapter 5 I describe the historical ILI data available for the US and motivate methods
for forecasting of this type of data. I demonstrate two forecasting strategies rooted in machine
learning and human judgment and show how these systems can be applied to forecast influenza
and other infectious diseases. I conclude with a discussion of the state of the art and how the
epidemiological forecasting landscape will likely change in the future.

Finally, I conclude in Chapter 6 with a discussion of the contributions in this thesis in the
broader context of the scientific enterprise and with an exploration of directions for future work.

5



6



Chapter 2

Related Work and New Directions

If I have seen further than others, it is by
standing upon the shoulders of giants.

Isaac Newton

2.1 Recapitulation
Because of the global and recurring nature of influenza outbreaks, there has been a great deal of
time and effort devoted to understanding the dynamics of influenza, especially in recent decades.
These dynamics can be broadly divided into two categories: evolutionary and epidemiological. I
briefly alluded to these topics in Chapter 1, and now I provide a much more thorough exposition
of the recent research in these two areas. After this, I explore how an understanding of influenza’s
dynamics has led to developments in predicting when and where future outbreaks will occur.

Evolutionary dynamics describe how the genetic and antigenic properties of influenza change
over time. Interestingly, it appears that some of these dynamics are unique to, and characteris-
tic of, influenza. Perhaps the most prominent example of this is the observation that influenza
exhibits remarkably constrained diversity in comparison to other RNA viruses [18]. As a result
of this constrained diversity, clades are replaced serially following infrequent, but punctuated,
changes in antigenicity [19]. Despite good correlation between genetic and antigenic drift on
long timescales [20], antigenic changes are more abrupt than the steady genetic drift on short
timescales [21]. Genetic changes have been shown to occur most frequently within the genomic
regions that encode the epitopes of the major surface antigen Hemagglutinin (HA) [22, 23], sug-
gesting a strong positive selection for strains able to evade the host immune response. In agree-
ment with epidemiological results, the strains comprising the trunk of the viral phylogeny typi-
cally arise in the tropical regions of the world, whereas strains originating in temperate regions
often appear only briefly before going extinct, forming short side branches [24, 25, 26]. The dis-
tinctive phylogeny of influenza inspired the creation of a new evolutionary measure, kappa (κ), to
quantify and compare the degree of branching within phylogenetic trees [27]. This new measure
captures, in a single dimensionless number, one of the most unique aspects of influenza’s evolu-
tionary dynamics; among RNA viruses, and even among other types and subtypes of influenza,
the A/H3N2 lineage is exceedingly and unexpectedly slender.
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In contrast to evolutionary dynamics, epidemiological dynamics are a function of the interac-
tion between influenza and its host—humans in this case. The epidemiological literature includes
several quantities which describe various aspects of an outbreak. Incidence, for example, is the
number of new cases within any given unit of time. It has been known for quite some time that
flu incidence can be approximately recapitulated with compartmental models, for example the
susceptible infectious recovered (SIR) models and their extensions [28]. It is also well known
that global pandemics occur concomitantly with the introduction of new subtypes [5]. These
statements regarding the global dynamics of flu are indicative of a general and high-level under-
standing of flu dynamics, but they highlight the absence of more specific knowledge of epidemic
processes. More recent studies have aimed to sharpen our understanding by elucidating the more
fine-grained temporal and spatial patterns of transmission. It has more recently come to light that
there is likely a human reservoir within Southeast Asia which appears to be the source of seed
strains for annual epidemics around the world [24, 29, 30, 31]. Further, there is a strong cor-
relation between latitude and timing of epidemics, with incidence in temperate regions strongly
influenced by both seasonality [32] and absolute humidity [33, 34]. However, rates and pat-
terns of transmission have in general been shown to be more strongly correlated with patterns
of human movement than with geographic distances [26, 35, 36, 37]. Despite widespread herd
immunity in humans, influenza displays a high reproductive number each season [38], with a
non-uniform distribution of incidence over host age. The earliest epidemic onset and the highest
attack rates both occur in children [39].

Computational modeling, a relatively recent development, has been used extensively to help
refine our understanding of the dynamics of influenza. Mathematical and agent-based models,
whether deterministic or stochastic, have been able to capture many of the unique dynamics of
influenza, including multiple cocirculating strains [40] and stable oscillations in incidence [41].
Additionally, models have been used to test different biological hypotheses explaining influenza’s
characteristically limited genetic diversity and linear phylogeny. One such hypothesis suggests
the existence of a short-term, strain-transcending immunity (also referred to as non-specific or
generalized immunity) in humans [42]. To date, several models incorporating generalized immu-
nity have been published, and all are able to generate flu-like outcomes [42, 43, 44, 45, 46]. This
particular hypothesis is explored in great detail in Chapter 3.

Here, however, I describe two prominent alternative hypotheses to generalized immunity. The
first is known as epochal evolution [47]. This hypothesis is rooted in the empirical observation
that there is a highly nonlinear—to some extent unpredictable—relationship between genetic
distance and antigenic distance. Typical models which define antigenic distance in terms of
genetic distance (for example, Hamming distance with bit string genomes) are therefore unable
to capture this dynamic relationship. Further, it has been observed that clusters of related strains
arise every 2–8 years, replacing the previously dominant cluster and becoming the new dominant
cluster. These serial cluster transitions are concomitant with amino acid substitutions that result
in punctuated changes in antigenicity. Perhaps surprisingly, the genetic distance between strains
in different clusters is almost always smaller than the genetic distance between strains within
any single cluster. Keolle, Cobey, et al. designed a model which is capable of generating both
the constrained genetic diversity and the periodic cluster transitions expected for influenza. The
critical component of this model is a neutral network that maps from genotypes to phenotypes.
Under this construction, it is possible to have strains with several amino acid differences map to
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the same antigenic state. Similarly, it is possible for strains that differ by only a single amino
acid to belong to different antigenic states. Simulated outcomes produced under this model agree
qualitatively with empirical outcomes observed for influenza A/H3N2.

Another hypothesis regarding the role of human immunity in constraining the standing ge-
netic and antigenic diversity of influenza is known as canalized evolution [25]. This hypothesis
is built on the observation that the empirical antigenicity of influenza A/H3N2 over time can be
represented roughly, abstractly, and without significant loss of information by points in a plane.
In other words, the antigenic trajectory of influenza can be understood in terms of a path through
some low-dimensional antigenic space. Bedford at al. built a model wherein the genetic and
antigenic state of any given strain is represented by a vector in Euclidean space (nominally R2).
Evolution in this model is represented by updating the position of a strain’s point in a direction
selected uniformly at random and a distance selected from a gamma distribution. Large-scale
individual-based simulations using this model give rise to results expected for influenza, includ-
ing constrained genetic and antigenic diversity, periodic sweeping cluster transitions, and a linear
phylogeny. It was demonstrated that the model, although stochastic, had a tendency for repeata-
bility. Specifically, continuation replicates of a simulation that was frozen in time generally
produced similar outcomes on short (1–2 year) timescales. This observation led to the prescient
conclusion that the trajectory of influenza may be predictable.

Evolutionary and epidemiological dynamics are used to explain past outbreaks, but there is
rapidly growing interest in applying this understanding forward in time to predict the future evo-
lution and transmission of influenza. Predicting the evolutionary dynamics of influenza is critical,
for example, in vaccine selection each year. Vaccine strains are selected based on analysis of cir-
culating strains by human assessment of which of those are likely to dominate in subsequent
outbreaks [30, 48, 49]. Vaccination, while certainly helpful in preventing the transmission of in-
fluenza, is only partially effective [8, 50, 51, 52, 53]. While the complete eradication of influenza
in humans is unlikely without a broadly effective and universal vaccine, there are still ways in
which the impact of epidemics can be further reduced. To be more specific, what we need now
is to improve our capacity for preparedness and prevention—we need forewarning [54, 55]. This
is the defining problem for which the nascent field of epidemiological forecasting has risen.

The first attempts at influenza forecasting essentially treated the problem as an instance
of more general time series forecasting [56, 57, 58, 59, 60, 61, 62]. As such, many of these
ideas, including in particular autoregression and the method of analogues, were borrowed from
econometrics and meteorology to predict incidence, emergency department visits, hospitaliza-
tions, and mortality due to influenza, pneumonia, and related respiratory infections. The com-
mon thread of these approaches is that traditional surveillance is the sole predictor variable.
A new and significant development in flu forecasting came with the realization that auxiliary
data sources could be integrated to produce better estimates of flu activity. Examples of such
sources used in predicting influenza include climatological data [63, 64, 65], search engine
queries [66, 67, 68, 69, 70, 71, 72, 73, 74], public comments on social media like Twitter
[75, 76, 77, 78, 79, 80], and online information-seeking behavior on websites like Wikipedia
[81, 82, 83]. As the state of the art advances, a serious challenge in both nowcasting and fore-
casting of influenza, and of infectious diseases in general, is to optimally assimilate all of the
surveillance signals that are available at runtime.

Predicting the real-time distribution and prevalence of influenza—the nowcasting problem—
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has traditionally been approached through use of a single digital surveillance stream (for ex-
ample, Google Flu Trends [69] and HealthTweets [84]). However, much more recent work has
focused on assimilating multiple data streams to produce a unified influenza nowcast [85]. San-
tillana et al. use data streams based on Google searches, Twitter microblogs, Aetna electronic
health records, and Flu Near You participatory surveillance. Rather than using a single assimi-
lation method, several approaches rooted in machine learning were used to explore the potential
for nowcasting at various lead-times. These methods include stacked linear regression with `1

penalty (LASSO), support vector machine regression with either linear or radial basis function
kernel (SVM, SVMRBF), and AdaBoost regression with decision trees. These methods were
used to assimilate the various digital surveillance streams, producing nowcasts and short-term
forecasts each week for the US as a whole. For nowcasts, the SVMRBF method gave the most
accurate results by a number of distinct metrics. Notably, the ensemble nowcast had lower error
than each individual input stream. To my knowledge, this work is the first time that multiple
digital surveillance streams have been used simultaneously to nowcast influenza. The resulting
nowcasts appear to outperform most or all other previously published nowcasting systems. There
are, however, serious limitations inherent to this methodology, including limited geographic res-
olution and susceptibility to missing data. I address these and other issues in Chapter 4.

Beyond nowcasting, there is widespread interest in forecasting disease outbreaks to minimize
losses which would otherwise have been preventable given prior warning. In recent years, the
CDC has sponsored two challenges (and a third currently underway) to predict influenza epi-
demics in the US [86, 87, 88], Defense Advanced Research Projects Agency (DARPA) has spon-
sored a challenge to predict the invasion of chikungunya into the Americas [89, 90], a consor-
tium of government agencies in collaboration with the Office of Science and Technology Policy
(OSTP) have sponsored a challenge to predict Dengue outbreaks in Puerto Rico and Peru [91],
and the Research and Policy for Infectious Disease Dynamics (RAPIDD) group of the National
Institutes of Health hosted a workshop for forecasting Ebola outbreaks [92]. As exemplified by
the fields of meteorology and econometrics, statistical and computational models are frequently
used to understand, describe, and forecast the evolution of complex dynamical systems [93, 94].
The situation in epidemiological forecasting is no different; data-driven forecasting frameworks
have been developed in a variety of settings.

The epidemiological forecasting literature is large and rapidly growing. Several reviews have
recently been published in an attempt to catalog and organize the vast amount of work being
done in this relatively new field of research [95, 96, 97]. Here I focus specifically on one par-
ticular influenza forecasting system, the SIRS-EAKF framework [65]. To my knowledge it was
the first to produce and publish seasonal influenza forecasts in real-time, and for 108 US cities.
The model is an extension of the susceptible-infectious-recovered-susceptible (SIRS) model that
is driven by absolute humidity (AH). More specifically, AH is used in the model to modulate
the transmissibility of influenza, as there is empirical evidence that AH affects viral survival and
transmission [33, 34]. This augmented SIRS model, functioning as a process model, is coupled
with the Kalman Filter to estimate the system state—influenza incidence in a particular city. En-
sembles of 200 SIRS-KF members were used in an Ensemble Adjustment Kalman Filter (EAKF)
framework to track the mean and covariance of SIRS state variables and model parameters over
time. In addition to retrospective forecasts, real-time season-wide forecasts were produced dur-
ing the 2012–2013 flu season. To produce these forecasts, 150 such EAKF ensembles were
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integrated through time up to the end of the flu season, providing a set of 150 trajectories of flu
incidence within each city. The peak week of the epidemic was computed from each trajectory,
and the mode of these peak weeks was used as a point prediction. Analysis of forecasting per-
formance indicates that the SIRS-EAKF framework is far more accurate than methods based on
resampling of historical trajectories. This methodology and initiative of publishing forecasts in
real-time were significant improvements in the state of the art of epidemiological forecasting.
However, the state of the art continues to improve, and I explore in detail several alternative
approaches to epidemiological forecasting in Chapter 5.

One alternative approach to epidemiological forecasting is to build forecasts that are based
on human judgment. In general, methods based on collective judgment take advantage of the
interesting observation that group judgment is generally superior to individual judgment—a phe-
nomenon commonly referred to as “The Wisdom of Crowds”. This was prominently illustrated
over a century ago when Francis Galton showed that a group of common people was able to
guess the weight of a 1198 pound ox to within 9 pounds [98]. Since then, collective judgment
has been used to predict outcomes in a number of diverse settings, including finance, economics,
politics, sports, and meteorology [99, 100, 101]. A more specific type of collective judgment
arises when the participants (whether human or otherwise) are domain experts—a “committee of
experts”. This approach is common in a variety of settings, for example in artificial intelligence
and machine learning in the form of committee machines [102] and ensemble classifiers [103].
Other examples of human involvement in influenza research include prediction markets [75, 104]
and participatory surveillance like Flu Near You [105, 106].

2.2 Innovation
Despite the significant advances in our understanding of the epidemiology and evolution of in-
fluenza, many questions remain unanswered [107]. It is unknown, for example, to what extent the
generalized immunity theory accurately describes the true immune response against influenza.
One of the biggest obstacles to addressing this concern is that generalized immunity is not well
characterized, and in particular, it is generally assumed without empirical evidence to be power-
ful yet transient. I specifically address the latter of these issues in Chapter 3 by examining the
role of generalized immunity in shaping both the evolutionary and epidemiological dynamics of
influenza. In doing this, I more precisely define which regimes of human immunity are most
plausible by assessing outcomes under various immunity assumptions with respect to a large set
of targets for which there exists abundant empirical evidence.

In the US, we have the relative luxury of having significant historical and ongoing surveil-
lance of influenza. However, this alone is not sufficient to answer the following critical and
deceptively simple question: what is the current distribution and severity of flu in the US? Tradi-
tional surveillance, while invaluable for understanding the past, is unable to provide an answer to
this question because of certain restrictions on geographic resolution and because of the delays
inherent in clinical data collection and reporting. Looking forward, it is difficult to predict the
course of an outbreak, even with complete situational awareness; it is even harder to make pre-
dictions when the current situation is not known to a reasonable level of accuracy. I address this
critical shortcoming in our surveillance capability in Chapter 4 by constructing a novel indicator
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of influenza activity in the US. Through a sensor fusion approach to the data assimilation prob-
lem, I show that a diverse set of digital surveillance proxies and a variety of prediction methods
can be aggregated across space and time to provide accurate estimates of influenza within US
states in real-time.

Given the magnitude of time, energy, and resources collectively invested by both participants
and organizers in the numerous recent forecasting challenges, it is critical that qualitative and
quantitative assessments be made to help understand where epidemiological forecasting excels
and where it lags. To assess accuracy, forecasts are typically compared to predefined baselines
and to other, often competing, forecasts. The focus has traditionally been on comparisons be-
tween data-driven methods. There has been less work toward understanding the utility of alter-
native approaches, including those based on human judgment. In Chapter 5 I develop and apply
two distinct approaches to epidemiological forecasting, with special emphasis on a method based
on collective human judgment. Each of these forecasting frameworks has been successfully put
to the test though numerous forecasting challenges. I assess the accuracy of forecasts produced
by these systems in several settings. Finally, I provide a demonstration of the state of the art by
contrasting the performance of data-driven and human judgment methods for epidemiological
forecasting, illustrating the relative advantages, and drawbacks, of each approach.
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Chapter 3

Inferring Parameters of Human Immunity
by Modeling Influenza

Many key concepts concerning the nature
of immunity have originated from the very
practical need to control virus infections.

Peter Charles Doherty

Much of this chapter is based on [108].

3.1 The evolutionary conundrum
The dynamics of rapidly evolving pathogens can be broadly divided into two classes: epidemi-
ological and evolutionary—collectively referred to as “phylodynamics” [18]. Epidemiological
dynamics include every aspect of disease that can be measured as a function of the host popula-
tion: incidence, attack rate, reproductive number, and anything else that depends on the trajectory
of an outbreak. Evolutionary dynamics on the other hand are the aspects of disease which are
measured as a function of the pathogen population: rate of evolution, genetic and antigenic di-
versity, and anything else that can be derived from a phylogeny.

For decades, the epidemiological dynamics of flu have been well understood, evidenced by
the fact that multiple generative models have been used to simulate these dynamics. This is
perhaps unsurprising given that we have observed, for many decades, a regular and repeating
pattern of winter epidemics in temperate regions. In fact, this pattern is used as a starting point
for many forecasting strategies—a topic discussed in much more detail in Chapter 5. Even
simple compartmental models provide a framework that is capable of generating, roughly, these
outbreak patterns.

The story for influenza’s evolutionary dynamics is, however, vastly different. Like other RNA
viruses, the influenza viruses exhibit a rapid rate of genetic and antigenic drift. The A/H3N2
subtype in particular has the most rapid drift rate of the influenza viruses [109], and because
of its volatile antigenic signature, it has been the most prevalent subtype in several recent flu
seasons. With a rapid rate of evolution and a continual selective pressure to evade host immunity,
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influenza could be reasonably expected to exhibit sustained, even saturating, viral diversity. Yet
the opposite appears to be the case; since its pandemic appearance in 1968, A/H3N2 has given
rise to a predominantly linear phylogeny, consisting of a single, well-defined trunk and short-
lived side branches (Figure 3.1).

Figure 3.1: Representative phylogenies of RNA viruses. Subplots show maximum
likelihood phylogenetic trees of selected RNA viruses, based on [18, 27]. (A) Human
immunodeficiency virus (HIV); type 1. (B) Hepatitis C virus (HCV); type 1b. (C)
Influenza A virus (IAV); type A/H3N2.

It was not until much later that the first generative models were posited that could, at least
to some extent, explain the distinctive evolutionary dynamics of influenza. What may have been
missing from the earlier models, it turns out, is a hypothesized key component of the immune
response against influenza.

3.2 A working model of influenza

3.2.1 Description of the base model
One of the first models to successfully capture the combined phylodynamics of influenza lever-
aged a two-component immune response [42]. The first of these captures the classical notion of
sustained protection against specific viral strains that a host has been previously exposed to. The
second captures the more novel idea that a temporary protection against all strains is conferred
immediately following exposure to any particular strain. This latter type of protection is known
by several names, including transient strain-transcenting immunity, temporary nonspecific im-
munity, and generalized immunity.

The model described above (referred to going forward as the “base model”) can be sum-
marized as follows. It is an individual-based generative model of the long-term spread and
evolution of influenza within a human population. Individuals are distributed according to a
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semi-stochastic spatial hierarchy; they are assigned random coordinates drawn uniformly within
a patch, with local clusters of hosts representing neighborhoods and the entire patch representing
a large population center. Patches are arranged in a grid, and the top and bottom halves of the grid
represent the northern and southern hemispheres, respectively. The likelihood of transmission be-
tween any pair of hosts is based on their proximity: within-neighborhood (R0 = 5), within-patch
(R0 = 0.4), or cross-patch (R0 ≈ 0.004). A 25% sinusoidal seasonal forcing modulates trans-
missibility in opposite phase for the northern and southern hemispheres. Individual viral strains
are defined by a small genome containing only the codons putatively under positive selection: 36
nucleotides encoding four hypothetical epitopes, each consisting of three amino acids. Antigenic
phenotype is the set of 12 amino acids encoded by this genome, and under this parameterization
there are 2012 possible distinct antigenic types. Following exposure to the virus, the probability
of infection depends on the immune history of the exposed host. Upon infection, hosts incubate
for two days, are infectious for four days, and are healthy afterward. When the host lifespan is
reached, the host is respawned with a blank immune history. There is a small chance of muta-
tion each day in each infected host (p = 10−5 per nucleotide (NT)), with new mutants arising
(replacing the parent strain in the infected host) and going extinct stochastically.

In the base model, immunity is conferred by two independent mechanisms: a long-term
immunity against previously encountered strains and a short-term immunity against all strains.
The long-term immunity provides very strong protection against strains that a host has been
previously infected with and provides a weaker protection against strains that are similar to those
known strains. In particular, the resistance afforded against a particular strain is a function of
the number of novel amino acids encountered at each position, providing 99% resistance against
strains with 2 or fewer novel amino acid substitutions (an immune escape threshold) and falling
linearly to 25% resistance as the number of novel amino acid substitutions approaches saturation
(12). The short-term immunity (generalized immunity) provides a broad protection against all
strains and decays exponentially over time.

3.2.2 Questioning the mechanisms of immunity
Finally, a generative model was available that could account for many of the characteristic phy-
lodynamics of influenza—but not all questions had been answered. In fact, this model raises
an even bigger question: is this notion of a generalized immunity an actual part of the human
immune response against influenza? On the surface it seems that to answer this question em-
pirically would require a very strange experiment—exposing people to influenza and measuring
the strength of their subsequent immune response. This is, of course, absurd. An alternative
could be to test for such an immune response in an animal model, but this is also prohibitive for
a number of the same reasons: measuring immune response is nontrivial, it is unclear how large
of a sample would be needed, and the duration of the experiment would need to be at least on
the order of the duration of protection of generalized immunity. Even under ideal conditions,
it would require the very strong (and tenuous as best) assumption that the results of the animal
system can be translated to a statement about the human system. At a very minimum, to even be
able to perform such an experiment at all, we need a better and more specific hypothesis about
the nature of generalized immunity.

There is, however, an alternative approach—one that could both give an idea of the plausibil-
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ity of generalized immunity in humans and also more specifically define our notion of generalized
immunity. Even though directly testing for generalized immunity in humans is currently infeasi-
ble, there are other measures for which we have abundant empirical data. These measures are of
course the ones alluded to earlier: the measures based on the population-level epidemiological
and evolutionary dynamics of influenza. The intuition for my approach is this: given a model
that can produce outcomes on which the same measures can be computed, find the parameteri-
zations of human immunity that give rise to the outcomes that are most congruent with what we
expect to observe with influenza in reality. In other words, we know by a variety of metrics what
the outcomes should look like; which model parameterizations, and in particular those of human
immunity, produce these outcomes? This idea is similar in spirit to Approximate Bayesian Com-
putation [110], whereby the likelihood of a given parameterization is inferred from the overall
parsimony of its outcome.

3.2.3 Model implementation and extensions

I implemented an open-source simulator of the base model with the primary aim of studying
how the parameterization of generalized immunity affects the outcomes predicted by the model
[111, 112]. Taking advantage of a considerable increase in available computing power since
the publication of the base model, I made several deviations from the default parameterizations
to relax some of the strong assumptions that were previously required. Foremost among these
assumptions were a small population size (12 million hosts) and a short host lifespan (30 years).

These parameter choices are less than ideal for several reasons, and naturally I would like to
use values that reflect reality as closely as possible. One artifact of increasing the host lifespan
in a small population is that the virus becomes prone to stochastic extinction. Another potential
problem that arises with such small a population size is that in some situations adaptive immunity
alone is able to constrain viral diversity [42, 113]. Although the original study primarily used the
smaller population size, it was demonstrated (as a proof of concept) that reasonable outcomes
could be obtained with a much larger population size (100 million hosts) and more reasonable
lifespan.

The main obstacles facing an implementation with a population size of seven billion and
a lifespan of around 60 years are computational in nature. There is an unavoidable trade-off
between the number of hosts allocated and the amount of RAM and CPU time needed. Given
the hardware available, and in the interest of time, I found that a population size of 100 million
hosts was achievable for the bulk of my simulations, which numbered in total in the thousands.
Since I ran all simulations at the larger population size, I was able to assume a more reasonable
host lifespan of 60 years by reducing the volume of transmission between distinct geographical
patches. These modest departures from the default parameterization of the base model result in
a more reasonable approximation of reality, and I expect that these changes will result in a more
reliable set of outcomes.

In fashion similar to the larger population proof of concept in [42], I was able to run a single
instance with a population size of one billion hosts, suggesting that, given appropriate hardware
(and an abundance of patience), the model could be used to simulate every living person.
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3.3 Assessing outcomes

3.3.1 Epidemiological features
Consider the time series of an epidemic, consisting of incidence (the number, or proportion,
of infected hosts) as a function of time. As previously discussed, there are many ways to de-
scribe such a trajectory, including features like the width, height, area, and overall shape of the
epidemic. In what follows, I formalize each of these features and give the expected values for
influenza A/H3N2 based on a survey of the relevant literature.

Annual Attack Rate (AAR) is the number of individuals infected during a single year, averaged
over all years. This is effectively the cumulative incidence over a period of one year and
is typically measured as the percentage of the population that becomes infected during
the epidemic. Several estimates of the AAR of influenza are available in the literature
[5, 29, 38, 39, 114, 115, 116] and give typical values ranging from 5% to 25%, depending
on age; I set the age-independent target value to 15%(±10%) based on these estimates.

Epidemic Duration is a measure of how long seasonal epidemics last, averaged over all sea-
sons. I defined this as the range of weeks, containing the week of peak incidence, that
captures 90% of the seasonal attack rate. Based on my estimate of the empirical epidemic
duration for the period spanning July 1, 2003 to July 1, 2012 using US surveillance data
available from FluNet [117], and in accordance with similar estimates available in the lit-
erature [5, 24, 114, 115, 118], I set a target average epidemic duration of 12(±2) weeks.

Reproductive Number (Rp) is a dimensionless number that quantifies the expected number of
secondary cases arising from a primary case throughout the duration of an infectious pe-
riod. This quantity differs from the basic reproductive number (R0) in that R0 assumes
a completely naive population, whereas Rp assumes a population with some pre-existing
partial immunity [38]. In the case of influenza, where a significant portion of the popu-
lation has lingering immunity from strains encountered either during a previous season or
through vaccination, Rp is a more appropriate measure than R0. Rp for seasonal influenza
in temperate regions has been estimated to be 1.3 (95% CI 1.2–1.4) [28, 38], though here
I assumed the more permissive range of 1.1–1.5 to be credible.

Peak Weekly Incidence is the peak of the weekly incidence of each seasonal epidemic, aver-
aged over all seasons. The true peak incidence of influenza is difficult to measure, so in-
stead I base the target range on estimates from the previously mentioned individual based
models. Specifically, I estimate based on the model described in [42] the peak weekly in-
cidence under normal epidemic conditions to be 2, 500(±1, 500) hosts per 100, 000 hosts ,
or 2.5%(±1.5%).

3.3.2 Evolutionary features
Considering the evolutionary history of the virus over time, there are several ways to describe
the course of viral evolution. These features capture the ideas of diversity, rate of mutation, and
various aspects of viral lineage. As before, I give the expected values of these features with
respect to the empirically observed lineage of influenza A/H3N2.
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Pairwise Diversity is the prevalence-weighted mean pairwise number of amino acid differences
between all pairs of strains existing on some day, averaged over all days. It has been previ-
ously used to quantify the average amount of viral antigenic [42] and genetic [47] diversity
and is an indicator of whether viral diversity is constrained (consistent with influenza) or
unconstrained (inconsistent with influenza). Because it is the average number of amino
acid differences between two strains, the possible values range from 0 to the number of
amino acids modeled, 12 in these simulations. Though the diversity of influenza follows a
“boom-and-bust” pattern [47], I expect that pairwise diversity should, on average, remain
low. Therefore, I assumed the plausible target value for these modeled strains to be 2(±1)
amino acids.

Fixation Rate is a measure of how quickly the virus evolves, as indicated by the number of
novel mutations becoming fixed in the viral phylogeny over some period of time. The
mutation rate for the A/H3N2 subtype is particularly high [119] and, for the sites assumed
to be under positive selection, has been measured to be 0.053(±0.01) substitutions per site
per year [42].

Most Recent Common Ancestor (MRCA) measures the number of years separating all con-
temporaneous strains. Here I used the average number of years of evolution separating two
randomly sampled strains on any given day to approximate the MRCA, as in [25, 120]. The
target value for influenza, using the HA gene only, is roughly 1.12 years with a 95% con-
fidence interval roughly spanning 0.58–1.97 years (excluding the 2002-03 season outlier)
[24].

Kappa (κ) is a dimensionless number which quantifies the potential for antigenic evolution of
rapidly evolving viruses [27]. I use κ to probabilistically quantify where on the diversifica-
tion spectrum, from very constrained (as expected for A/H3N2 flu) to exceedingly diverse
(as observed for between-host HIV), a simulated phylogeny falls. κ is measured here as
the parameter of the best fit Poisson distribution (determined by maximum likelihood esti-
mation) given the counts of excess antigenic variants, per variant, over the duration of the
simulation. With its characteristic phylogeny, influenza exhibits a relatively low degree
of phylogenetic branching, and κ has been estimated to be 0.11 with a 95% confidence
interval roughly spanning from 0.01–0.49 based on [27].

3.4 Mapping the parameter space of generalized immunity
In the model, generalized immunity is controlled by two parameters: strength and duration. The
strength of generalized immunity (ω) is a dimensionless number ranging from 0 to 1, which
directly translates to the maximum initial probability of immunity against all viral phenotypes.
The duration of generalized immunity (τ ) is the half-life (in units of time) controlling the rate
at which the overall protection of generalized immunity decays. After some amount of time has
elapsed (∆t), the probability of protection due to generalized immunity is:

Pr
GI

(∆t) = ωe{−∆t/τ}

Together with the protection of cross immunity (PrCI), a function of antigenic distance (f(D)),
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the probability of infection is given by:

Pr
infection

(∆τ, f(D)) =

(
1− Pr

GI
(∆t)

)(
1− Pr

CI
(f(D))

)
Since the empirical existence of a generalized immune response is not entirely certain, I

wanted to find which parameterizations could at least be plausible. To do this, I set out to map
the two-dimensional parameter space of generalized immunity. The space in its entirety, however,
contains several uninteresting regions. For practical considerations, I constrained the exploration
to the region bounded by strength from 0.25 to 1.00 and half-life from 41 days to 60 years,
reasoning that a) exceedingly weak or short parameterizations approach the degenerate case
of nonexistence of generalized immunity and that b) parameterizations lasting longer than the
lifespan of a host effectively confer complete and permanent immunity against all strains. Over
this bounded space I imposed a grid of sixty points, roughly equally spaced in strength and in
the logarithm of half-life, to represent a large set of potential parameter regimes of generalized
immunity.

Using the simulator I implemented, I “sampled” each grid point (parameterization) twenty
times. Each individual sample was a fifty year simulation of influenza transmission and evolution
in a population of 100 million human hosts. From the output of each simulation, I measured each
of the previously discussed epidemiological and evolutionary outcomes, which are summarized
in Table 3.1.

Measure Target Value 95% CI Source
Annual Attack Rate
(AAR)

15% 5–25% [5, 29, 38, 39, 114,
115, 116]

Epidemic Duration 12 weeks 10–14 weeks [5, 24, 114, 115,
118]

Reproductive Number
(Rp)

1.3 1.1–1.5 [28, 38]

Peak Weekly Incidence 2.5% 1–4% following [42]

Pairwise Diversity 2 AA 1–3 AA following [42]
see also [47]

Fixation Rate 0.053 NT/yr 0.043–0.063 NT/yr [42]

Most Recent Common
Ancestor (MRCA)

1.12 yr 0.58–1.97 yr [24]
see also [25, 120]

Kappa (κ) 0.11 0.01–0.49 based on [27]

Table 3.1: Summary of epidemiological and evolutionary measures.

Examining parameter space maps with respect to each epidemiological (Figure 3.2) and evo-
lutionary (Figure 3.3) outcome brings to light several interesting trends. To point out some of
these trends, it is helpful to first consider the behavior of the model within the regimes of extreme
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parameterizations: strengths that lead to either ineffective or perfect protection and durations that
lead to either ephemeral or permanent protection.

Figure 3.2: Epidemiological parsimony is measured across generalized immunity
parameter space. Sixty parameterizations of generalized immunity (strength and du-
ration) were simulated. Within each map, the sixty parameterizations are represented
by a set of circles and semicircles; the inner circle at each point represents the sam-
ple mean of the measure, and the top and bottom semi-circles represent the mean plus
and minus one sample standard deviation, respectively (n = 20 realizations for each
point). Color corresponds to the agreement between the simulated outcome and the ex-
pected outcome for influenza; blue indicates a value below the 95% CI for influenza,
red indicates a value above the 95% CI for influenza, and green represents the ex-
pected value for influenza. The 95% CI for influenza is marked on each color scale,
and the target value is indicated by “⊕”. The tip of the “FGB’03” arrow indicates the
default parameterization given in [42]. Triangulation and interpolation were used to
achieve smooth shading throughout the space to facilitate visual identification of spa-
tial trends. Faint contour lines demarcate confidence interval boundaries. (A) AAR
measured from model output; target value is 0.15 (95% CI: ±0.10). (B) Epidemic du-
ration measured from model output; target value is 12 (95% CI: ±2) weeks. (C) Rp

measured from model output; target value is 1.3 (95% CI: ±0.2). (D) Peak weekly
incidence measured from model output; target value is 0.025 (95% CI: ±0.015).

Consider first the regime most similar to a model without generalized immunity, where pro-
tection is both ineffective and ephemeral (bottom-left in maps). Without the extra protection
afforded by generalized immunity, hosts are much more susceptible to repeated infection. This
is reflected by a high incidence and a very high attack rate, although epidemic duration and
reproductive number are within their target ranges. As a result of an increase in the number
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Figure 3.3: Evolutionary parsimony is measured across generalized immunity pa-
rameter space. Maps are as described in Figure 3.2. (A) Pairwise diversity measured
from model output; target value is 2 (95% CI: ±1) amino acids. (B) Fixation rate
measured from model output; target value is 0.053 (95% CI: ±0.01) substitutions per
site per year. (C) MRCA measured from model output; target value is 1.12 (95% CI:
0.58–1.97) years. (D) κ measured from model output; target value is 0.11 (95% CI:
0.01–0.49).

of infections, the virus has more opportunity to diversify. Furthermore, pairwise diversity and
MRCA are particularly high, while κ and fixation rate are elevated, though still within their target
ranges. Selective pressure within this regime is weak, as minor antigenic changes are sufficient
to evade the similarity-based protection of cross-immunity. A characteristic trajectory within this
parameter regime is shown in (Figure 3.4 A); peak incidence and attack rate are greatly elevated,
diversity is unconstrained, and phylogeny is exceedingly branched.

Perhaps the most extreme regime is that of perfect and permanent generalized immunity
(top-right in maps). Here there seems to be an antipodal response, both epidemiologically and
evolutionarily. With such extreme protection, hosts are essentially protected for life following an
initial exposure to any viral phenotype. As can be expected, extreme lows are reported for almost
all measures. Epidemic duration, which is below its target but within its plausible range, is the
sole exception, presumably because the width (though not the magnitude) of the epidemic curve
remains on average unchanged. Due to a dearth of susceptible hosts, the virus is saved from
stochastic extinction only by the eventual accumulation of newborn hosts in a manner reminis-
cent of measles. A characteristic trajectory within this parameter regime is shown in (Figure 3.4
B); sporadic outbreaks result in greatly reduced peak incidence and attack rate, pairwise diver-
sity approaches zero during extended periods of near-extinction, and phylogeny is exceedingly
slender.
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Next, consider the two hybrid regimes of generalized immunity: ineffective but permanent,
and perfect but ephemeral (bottom-right and top-left in maps, respectively). For the first time,
reasonable outcomes are observed for many measures in these regimes, and in particular both
incidence and diversity are satisfied within and between both regimes. According to most maps,
the value being measured is relatively static throughout the transition from corner to corner.
One exception to this trend is epidemic duration, which generally transitions from low (short) to
high (long) as the duration of generalized immunity increases. Another exception is fixation rate,
which indicates very strong positive selection in the perfect-but-ephemeral regime and influenza-
like positive selection in the ineffective-but-permanent regime. The latter result indicates that
very short durations of generalized immunity pressure the virus into a state of rapid, stepwise
change in antigenicity, whereas very long durations of generalized immunity pressure the virus
into making less rapid, but more significant, jumps in antigenicity. As the strength of generalized
immunity approaches its minimum, selective pressure depends only on adaptive immunity, which
is, at least in the model, a nonlinear function of antigenic distance. As a result of this nonlinearity,
rare-but-large antigenic steps are more favorable than frequent-but-small antigenic steps.

Finally, I come to what could be the plausible regime of generalized immunity: moderate
in strength and of intermediate duration (having a half-life on the order of several months to
years). All eight measures are generally close to their target values when the model is parame-
terized within this regime. Characteristic trajectories within this parameter regime are shown in
Figure 3.4 C and Figure 3.4 D; regular annual epidemics with an attack rate of around 15% are
observed, pairwise diversity takes on the familiar pattern of gradual build-up followed by rapid
collapse coinciding with extinction of prominent lineages, and phylogeny is generally linear over
long time spans, with a moderate amount of short-term branching.
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Figure 3.4: Characteristic epidemiological and evolutionary dynamics are ob-
served within different parameter regimes. For each parameterization, a ten year
excerpt from a typical simulation is shown. Graphs on the left show weekly percent
incidence (northern hemisphere only, green) and weekly mean pairwise antigenic di-
versity (blue). Radial dendrograms on the right show phylogeny (red) with concentric
rings marking one year intervals. (A) Weak and short-lived generalized immunity
(strength = 25%, half-life ≈ 1.3 months). (B) Strong and long-lived generalized im-
munity (strength = 100%, half-life ≈ 11 years). (C) Parameterization similar to that
described in [42]: strong and short-lived generalized immunity (strength = 100%,
half-life ≈ 7 months). (D) Alternative parameterization within the plausible region:
moderate strength and intermediate duration generalized immunity (strength ≈ 63%,
half-life ≈ 28 months).
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Overall, I observe that:
• AAR is closest to the target value when strength and duration of generalized immunity are

both relatively high, with some degree of trade-off (Figure 3.2 A).
• Average epidemic duration is a complex function of generalized immunity, but in general

is close to the target value for moderate durations of generalized immunity (Figure 3.2 B).
• Rp is closest to the target value when generalized immunity is strong and short-lived (Fig-

ure 3.2 C).
• Peak weekly incidence is closest to the target value when strength and duration of gener-

alized immunity are inversely proportional (Figure 3.2 D).
• Pairwise diversity is closest to the target value when strength and duration of generalized

immunity are inversely proportional (Figure 3.3 A).
• Fixation rate is closest to the target value when strength and duration of generalized im-

munity are inversely proportional (Figure 3.3 B).
• MRCA is closest to the target value when strength of generalized immunity is moderate or

high; this measure appears to be somewhat insensitive to changes in duration of generalized
immunity (Figure 3.3 C).

• κ is closest to the target value when generalized immunity is relatively strong over a mod-
erate duration (Figure 3.3 D).

3.5 Computing likelihood across parameter space
Although it is informative to examine each measure in isolation, the goal now is to characterize
the plausible range of parameterizations of generalized immunity based on the cumulative evi-
dence provided by all eight measures. In other words, for each point in parameter space, I want to
use the evidence from all measures to form a combined estimate of the joint likelihood of each pa-
rameterization. I have a point estimate and a 95% credible interval for the empirical value of each
measure, and I want to produce a single figure of merit. If I assume that all target distributions
are Gaussian, then the Mahalanobis distance [121] can be used to calculate the joint likelihood
I seek. The Mahalanobis distance measures the covariance-adjusted distance from a given point
(x ∈ Rp) to the center of a multivariate Gaussian distribution (N (µ,Σ);µ ∈ Rp,Σ ∈ Rp×p) as:

MD(x;µ,Σ) =

√
(x− µ)T Σ−1 (x− µ)

Here p is the number of features, x is the vector of values measured from simulator output
and µ is the vector of empirical target values for each feature. If I further assume that all features
are independent, then the covariance matrix Σ is the matrix whose diagonal entries are based on
the width of each measure’s credible interval and zero elsewhere. Given a Mahalanobis distance,
the likelihood (and therefore the statistical significance) of a parameterization can be determined
through the property that squared Mahalanobis distance is chi-squared distributed with p degrees
of freedom. After applying this methodology across parameter space, I arrive at the final map of
plausible parameterizations of generalized immunity (Figure 3.5).
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Figure 3.5: Generalized immunity is potentially longer lasting and weaker than
previously suspected. Map is as described in Figure 3.2 with circles at each indi-
vidual parameterization suppressed. Color encodes the value of the chi-squared test
statistic; green represents inability to reject the null hypothesis that an outcome is not
a multivariate outlier (equivalently, is influenza-like), and red represents high confi-
dence in the rejection of that hypothesis. Lines on the color scale indicate probability
cutoffs at the p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001 levels for a chi-squared distribution
with eight degrees of freedom.

The original parameterization of generalized immunity given in [42] (“FGB’03”) is very
near to—but within—the threshold of significance. The bounded area of parameter space can
be loosely interpreted as the set of parameterizations which are at least as likely as the original.
The FGB’03 parameterization is just one extreme of a spectrum of plausible parameterizations
of generalized immunity, which extends much further in both dimensions, up to a half-life of
many years at half strength.

This probably raises a question: according to the model, what is the single most likely pa-
rameterization of generalized immunity? This is difficult to answer for several reasons. First,
parameter space is continuous, but it was sampled over a discrete grid. Second, each sample
contains some amount of noise due to the stochastic nature of each simulation, which makes it
difficult to say precisely which points have the maximum likelihood. Third, there is no guarantee
that the likelihood function is convex over parameter space, which means that there is no efficient
method for finding the global optimum. Finally, and most importantly, the shape of the plausible
region depends on every other parameter in the model and on which features are measured on
model output—this will be explored in the following section.

With these caveats in mind, it is possible to give a rough estimate of the most likely param-
eterization. The grid can be made continuous through interpolation, each point was sampled
20 times to reduce the variance of the estimated likelihood, a brute force solution can be used
to search for the point of maximum likelihood, and likelihood is reasonably robust to model
parameterizations and output features. In Figure 3.5, the grid point with maximum likelihood
(equivalently, minimum Mahalanobis distance) is at τ = 1 year, ω = 87.5%.
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3.6 Sensitivity analysis and robustness

3.6.1 Relaxing assumptions

When computing likelihood in the previous section, I made two simplifying assumptions: that the
credible intervals of empirical targets are normally distributed and that all features are marginally
independent. These assumptions are, of course, quite unrealistic. κ, for example, has a very
skewed distribution, and the features of peak weekly incidence and annual attack rate, for ex-
ample, are almost certainly correlated to some extent. Unfortunately, I do not have an analytical
expression for the distribution of any of the features, and there is not enough empirical evidence
available to reliably estimate the correlation structure between all features. Instead, I attempt
to relax these assumptions by excluding subsets of features and estimating correlations from
simulated outcomes, and I show how these changes affect my conclusions on the plausibility of
generalized immunity.

To begin, note that most features have effectively normally distributed credible intervals. In
fact, the only features which are explicitly not normally distributed are MRCA and κ. I now
ask the following question: what are the plausible parameterizations of generalized immunity
in the absence of MRCA and κ? To do this, I repeat the process of determining likelihood
across parameter space and assess likelihood in terms of a chi-squared distribution with now
only six degrees of freedom. There appear to be only minor changes to the region of plausible
parameterizations, suggesting again that the intermediate regime of generalized immunity is most
plausible (Figure 3.6 A).

Next, consider the assumption of independence among features. Here I take two separate
approaches in an attempt to understand how this assumption affects my conclusions. First, I
exclude measures which are suspected to be highly correlated. Second, I estimate the covariance
matrix of the features to calculate a more stringent Mahalanobis distance.

Regarding the first approach, I exclude two features which are presumably highly correlated
with some subset of the remaining features: peak weekly incidence and pairwise diversity. Of the
peak weekly incidence (roughly measuring height), epidemic duration (rougly measuring width),
and annual attack rate (roughly measuring area) triplet, any individual measure can be reason-
ably estimated given the other two, assuming that there is some archetypal epidemic shape—an
idea applied in Chapter 4. Of these three related measures, I exclude peak weekly incidence
because I am more confident in the target distributions of epidemic duration and annual attack
rate. Pairwise antigenic diversity and MRCA both essentially measure the amount of divergence
among extant strains. Given a distant MRCA, high diversity is not surprising; given a recent
MRCA, low diversity is not surprising; and vice versa. I exclude pairwise diversity because true
MRCA can be reasonably estimated from empirical sequence data, whereas it is unclear how to
estimate, or to even define, pairwise diversity using the same data. As before, I evaluate like-
lihood across parameter space and observe only minor variations on the shape of the plausible
region (Figure 3.6 B).

Regarding the second approach, I first estimate the sample correlation among features on sim-
ulated data. I generate this estimate separately at each grid point (recall that n = 20 simulations
at each point) and observe that much of the correlation structure is preserved across parameter
space. I illustrate this correlation structure below, showing the average of all individual correla-
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Figure 3.6: Conclusions regarding generalized immunity are generally unchanged
by relaxing assumptions. Maps are as described in Figure 3.5 with threshold of sig-
nificance adjusted appropriately. Maps show likelihood where (A) features with cred-
ible intervals not normally distributed are excluded, (B) features with the strongest
correlations are excluded, and (C) Mahalanobis distance is computed using a feature
covariance matrix estimated from simulator output.

tion matrices (Figure 3.7). Until now I implicitly employed a diagonal covariance matrix when
calculating Mahalanobis distance, where diagonal elements were variances and non-diagonal el-
ements were zero (no correlation between features). Now, I build a more informative covariance
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matrix by using simulator output to estimate correlations between features. I generate a covari-
ance matrix separately at each grid point by first converting the estimated correlation matrix into
a covariance matrix and then element-wise averaging the old (diagonal) and new (non-diagonal)
covariance matrices. Note that the diagonals of each matrix are equal, but the non-diagonals take
50% of the correlation structure to avoid overfitting. I use the resulting covariance matrices to
calculate a Mahalanobis distance which takes into account correlations between all measures.
Again, the shape of the plausible region remains overall unchanged (Figure 3.6 C).

Figure 3.7: Average correlation structure of features measured on simulator out-
put. The strongest correlations are on average between MRCA and pairwise diversity:
0.90; annual attack rate (“AAR”) and PWI (“incidence”): 0.73; AAR and pairwise
diversity: 0.71; and AAR and MRCA: 0.67.

Finally, it is interesting to take the intersection of the plausible region between each of the
maps built with a different set of assumptions. In all, the original parameterization proposed
by [42] is within—but very near to the border of—the plausible region. Additionally, all maps
show the same general trend, and the shape of the plausible region is generally well conserved.
The most extreme difference is probably the clipping of the plausible duration of generalized
immunity. Whereas the original (Figure 3.5) map suggested that half-life parameterizations of
up to roughly 10 years were plausible, these more stringent maps (particularly Figure 3.5 B)
seem to truncate the extremes of the plausible region to a half-life of roughly 5–6 years. While
this may seem at first like a significant difference, the original claim still holds: generalized
immunity could plausibly be much weaker and longer lasting than commonly assumed.

3.6.2 Targeting median age instead of life expectancy
Global life expectancy is on the order of 60–70 years [122], and this is the value that I matched in
my simulations. However, because the simulated population is unable to accommodate a grow-
ing population, it is also interesting to simulate a lifespan that is closer to the global median
age, which is on the order of 30 years [123]. To determine to what extent shorter host lifespans
affect my results regarding the plausibility of generalized immunity, I remapped a large portion

28



of parameter space under a host lifespan of 30 years. I ran sets of at least 5 replicates across the
most salient portion of parameter space to determine how the shape of the plausible region is af-
fected. As expected, reducing lifespan (equivalently, increasing host respawn frequency) results
in an overall increase in the number of naive hosts, and attack rates are uniformly, but not unrea-
sonably, increased compared to those of the simulations using 60 year lifespans (Figure 3.8 A).
Although the shape of the plausible region changes slightly, I find that the primary conclusions
still hold (Figure 3.8 B).

Figure 3.8: Conclusions regarding generalized immunity are generally unchanged
by using median age instead of expected lifespan. Simulations used a lifespan of 30
years instead of 60 years (n ≥ 5). (A) Attack rate, as in Figure 3.2 A. (B) Likelihood
across parameter space, as in Figure 3.5.

3.6.3 A more realistic population structure
The simple world of the model consists of two equally populated hemispheres which are sub-
jected to sinusoidal seasonal forcing in opposite phase. In the real world, seasonal forcing is
much more complex, and only the temperate regions of the world experience the type of seasonal
forcing that can be described by a simple sinusoid with an annual peak in the winter months. The
highly-populated tropical regions of the world are not subject to such well-defined forcing, yet

29



it has been shown that strains arising and circulating in these tropical regions play a significant
role in the diversification and spread of flu globally [25, 29]. It is therefore of great interest what
impact the simple geography of the model has on immunity results and how a more realistic
model of the world would change those results.

To this end I made a straightforward extension to the model to allow for patches representing
tropical regions. These patches differ from the temperate patches only in that there is no imposed
seasonal forcing. Additionally I redistributed the 20 patches (originally divided into 10 northern
and 10 southern patches) into 8 northern, 10 tropical, and 2 southern patches to more closely
approximate the actual distribution of the world population. All other aspects of the model,
including between-patch contact rates, remained the same. As with the sensitivity analysis of
host lifespan, I ran sets of 5 replicates across a broad range of parameter space to assess the
impact of including tropical dynamics on the shape of the plausible region of immune parameters.
I find that the shape of the plausible region changes somewhat more significantly, in particular
becoming more jagged (presumably an artifact of the course grid resolution and a small number
of replicates), and more importantly only extending up to a half-life of 2 years (Figure 3.9).
Despite these moderate changes to the shape of the plausible region under a remarkably different
model of the world, the conclusion remains in essence the same: generalized immunity could
plausibly persist with a half-life that is meaningfully longer than originally anticipated.

Figure 3.9: Conclusions regarding generalized immunity are generally unchanged
when using a more realistic population structure. Simulations included a large
tropical deme with no seasonal forcing (n ≥ 5). Likelihood across parameter is shown
space as in Figure 3.5.

3.7 Final considerations
Although it has yet to be conclusively shown that generalized immunity is responsible for in-
fluenza’s characteristic phylodynamics, there have been several recent studies providing empir-
ical evidence that cellular immune responses are able to confer some degree of heterosubtypic
immunity. In mice, cellular immunity has been shown to reduce illness [124] and protect against
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lethal infection following infection with different subtypes [125, 126]. Similarly, cell-mediated
heterologous immunity has been observed in ferrets [127, 128]. Further, it has been suggested
that weak heterologous immunity in humans is necessary to account for suppressed influenza B
outbreaks following severe epidemics of influenza A [129].

Regarding the nature of antigenic evolution in the model, it is important to note that there are
implicit constraints on the magnitude of antigenic change between viral progenitor and progeny
strains which determine the process by which immune escape mutants arise. Antigenic evolution
is concomitant with non-synonymous substitutions in viral codons, and although individual mu-
tations can cause at most one amino acid substitution, mutations events are independent across
nucleotides and can potentially occur simultaneously within an infected host on each day of in-
fection. Although technically possible, it is exceedingly unlikely that any nascent mutant will
differ from its parent strain at more than two amino acid sites, and because at least three amino
acid substitutions are required to cross the immune escape threshold (in the current parameteri-
zation), any large antigenic changes will almost surely be the result of a series of mutation events
over multiple days and across multiple hosts. While it has been demonstrated that models al-
lowing for rare, but abrupt, changes in antigenicity are able to reproduce many of influenza’s
characteristic dynamics without a need for generalized immunity, the incremental changes in
antigenicity modeled here are more consistent with our understanding of the empirical mecha-
nisms of antigenic drift on the micro scale of short-term, within-host evolution [130]. However,
on longer timescales it is generally understood that punctuated changes in antigenicity (which
the model explored in this chapter neither prescribes nor proscribes) drive the cluster transitions
observed roughly every 2-5 years with influenza A/H3N2 [19, 47, 131].

Although the model successfully recapitulates the phylodynamics of influenza A/H3N2, it
should be noted that there are certain design choices which complicate the interpretation of sim-
ulated trajectories. The current model assumes a universe consisting of only influenza A/H3N2,
and is therefore unable to generate the seasonal variations in dominant subtypes observed empir-
ically. Complicating the addition of these additional strain types is our limited understanding of
the strengths and durations of the interactions between them. Another shortcoming of the present
model is an absence of the effects of broad vaccination campaigns routinely used in many parts
of the world. Mass vaccination against contemporary strains undoubtedly has a non-trivial effect
on the shape of the epidemic trajectory which cannot be captured in the simplistic universe of
the model.

Additional improvements to the model could include using a more realistic population struc-
ture, perhaps taken from synthetic population estimates [132]; and incorporating climatological
data, such as absolute humidity [34], to more accurately modulate transmissibility than the cur-
rent sinusoidal forcing function. Finally, the simplistic, two-component immune system mod-
eled here is a useful, but limited, abstraction of the complex and not entirely understood human
immune response against rapidly evolving, antigenically variable viruses. For example, the con-
founding phenomena of original antigenic sin, antigenic seniority, antigen trapping, and back-
boosting have a significant and non-trivial role in determining immune response [133, 134], yet
none of these effects are explicitly modeled. (Although the effects of transient generalized im-
munity are arguably similar in some respects to the effects of back-boosting, which increases
antibody titers against all previously encountered strains for a duration of time on the order of
one year.) However, it would be straightforward to extend the model to emulate original anti-
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genic sin and antigen trapping, and modeling the effect of back-boosting in a partially vaccinated
population would be another interesting, albeit more challenging, direction for future work.
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Chapter 4

Nowcasting Influenza through Sensor
Fusion of Digital Surveillance

Whenever the state of a system must be
estimated from noisy sensor information,
some kind of state estimator is employed
to fuse the data from different sensors
together to produce an accurate estimate of
the true system state.

Simon J. Julier
Jeffrey K. Uhlmann

Much of this chapter is based on [135].

4.1 Situational awareness for preparedness
Epidemiologists, clinicians, and public health policy makers together face a serious and unique
challenge; at any given point in time, the true extent of a disease outbreak is not fully known—
perhaps even unknowable. This is in stark contrast with meteorologists, for example, who have
at their immediate disposal a large set of highly accurate and real-time tools for data acquisition,
including radar, atmospheric and oceanic sensor arrays, and satellite imaging. A similar parallel
exists to some extent for economists who have in real-time a precise set of market indicators
from a variety of reliable sources. It is desirable, advantageous, and profitable to have accurate
and timely situational awareness in order to prepare for, and to mitigate the effects of, disease
outbreaks, weather systems, and market fluctuations. There is, however, a fundamental differ-
ence between these scenarios, and it has to do with what can be learned in real-time from the
state of the system under study.

Epidemiology is concerned with the spatial and temporal spread of disease through a host
population. This is unfortunately difficult to measure, especially instantaneously. For flu in the
US, matters are further complicated by the fact that a large fraction of infections are asymp-
tomatic, those which present with symptoms often do not seek treatment, only the most severe
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cases result in hospitalization, reporting of cases is in large part voluntary, the sample of reported
cases is not representative of the underlying population, and the data that is eventually reported
has several additional shortcomings. Clearly, the situation is far from ideal. To borrow from the
computer science literature, there is no silver bullet [136]—there is seemingly no single develop-
ment in traditional syndromic surveillance that can provide an order-of-magnitude improvement
in surveillance timeliness, resolution, or accuracy. However, in very recent history a new type
of “surveillance” has emerged that has the potential to complement and alleviate some of the
shortcomings of our current surveillance system—digital surveillance.

4.1.1 The gold standard is not ground truth
As discussed briefly in Chapter 1, weighted percent influenza-like illness (wILI)—reported vol-
untarily though the ILINet program and posted publicly by CDC—is currently the gold standard
of flu activity in the US. Unfortunately, this signal, by the fault of no specific party, has a large
number of issues which preclude its use in real-time tracking of localized flu incidence in the
US. Some of these are due to the inherent nature of infectious disease. Examples include the
fact that different types and subtypes of influenza have varying severity in clinical presentation,
access to healthcare is nonuniform, there is an incubation period during which a person is in-
fectious before symptoms appear, and severity of symptoms depends on age and overall health
status. Other issues are due to man-made restrictions in the interest of privacy and include the
fact that the finest geographic resolution at which wILI is publicly available is at the level of
HHS or census regions. Finally, there are issues that are inherent to the data collection process.
This is the source of the inherent lag between illness and reporting and is the reason that backfill
of provider reports causes retrospective adjustments to previously published wILI.

Revisions due to backfill have the potential to meaningfully change the story of an epidemic,
and the magnitude of the wILI update appears to be largest within the first few weeks. This
is illustrated for HHS region 9 in Figure 4.1 by overlaying the initial wILI signal (a one week
delay) with the final wILI signal (a one year delay); an accurate real-time estimate does not exist.
Similar—though perhaps not as egregious—revisions are observed across all regions and for the
US as a whole. In general, I define the final wILI signal as the value of wILI as reported 52
weeks after the week in question, and I often call this “final” wILI. All other wILI reports I refer
to as “preliminary”, particularly when referring to the most recently published 1–5 wILI values
which are especially volatile.

Some of these issues are unavoidable; for example, there is no plausible way to detect in-
fection before the appearance of symptoms, vulnerable populations (for example, the elderly)
will generally present more severe symptoms, and some types of influenza (for example, subtype
A/H3N2) are more clinically significant than other types (for example, type B). Other issues,
however, might not be insurmountable—at least in theory. The best example of this is the ge-
ographic restriction currently imposed on wILI reporting. Each report comes from a healthcare
provider that has, at least, an associated zip code—but this information is not shared publicly. It
seems difficult to improve the timeliness and stability of wILI, but as I will soon demonstrate,
there are new and alternative data sources that can help to do just that.
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Figure 4.1: Significant adjustments to wILI are possible through backfill. In HHS
region 9, initial wILI reports (red) are compared with final wILI reports (black).

4.1.2 The rise of digital surveillance
The explosive growth of the internet and of the number of individuals with internet access has
had a profound impact on society and culture in the past two decades. The most popular websites
generate a staggering amount of traffic, with an average hit rate on the order of several hundred
thousand hits per second. The data, and the statistics based on it, reveal much about current
events and about human behavior in general.

Suppose someone develops a fever and sore throat, and, wondering what could cause such a
condition, he or she queries an internet search engine (or maybe just asks a smartphone): “Do
I have the flu?”. This exact scenario—word for word—happens en masse every flu season; and
Google, with some caveats, makes this data available in real-time for various locations within the
US (Figure 4.2). There is a clear correlation between what people are searching for and the status
of flu epidemics. This discovery led to the creation of a tool built specifically for the purpose of
estimating wILI using search queries: Google Flu Trends [69].

Internet users do much more than just submit queries to search engines, and there are two
additional types of internet activity that have been shown to be strongly correlated with flu out-
breaks. The first of these is reports of self-classified illness posted publicly to social media
websites like Twitter. In addition to indicating that a user has been infected, these tweets often
contain geolocation metadata which enables us to estimate rates of infection within specific loca-
tions. The second activity I broadly refer to as “information-seeking behavior” and includes visits
to informational resources like Wikipedia and the CDC website. Both of these sites maintain ac-
cess logs for the purpose of analytics, and these logs tell a story about what kind of information
people are looking for during the flu season. Wikipedia access logs are publicly available and
have been used in the past to estimate flu activity in the US [82]; CDC website access logs are
not publicly available, but CDC has shared some of these logs with me for research purposes.

Each of the above examples can be used to produce an estimate, or a proxy, of wILI. What
is especially appealing about all of these digital surveillance sources is that they are available
online and in real-time. Many of them are also available at a finer geographic resolution than
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Figure 4.2: Google Trends data, an example of digital surveillance, resembles wILI
in the US. Left: a screenshot of the Google Trends result for “do i have the flu” be-
tween 2011 and 2016. Right: US wILI over the same period.

publicly available ILINet data. The present challenge is to combine all of the signals available at
any given point in time to produce an optimal estimate of the final value of wILI at as fine of a
geographic resolution as possible. This is in essence a problem of data assimilation.

4.2 A strategy for optimal assimilation

4.2.1 The Kalman filter
The Kalman filter (KF) is an iterative algorithm for estimating the state of a system using a) a
model of state evolution and b) a set of measurements of observable system properties [137].
Perhaps the single most attractive property of the KF is that the mean estimate of the state will be
optimal in a least-squares sense—assuming the process (both in reality and as modeled) is linear
and all distributions are Gaussian. Additionally, the estimated state is not just a point prediction,
but is instead a multivariate normal distribution over state-space. Another nice property of the
KF is that it represents a Markov process—the state at time t depends only on the state at time
t− 1. This implies that the KF is recursive and be computed “on-line” without the need to store
all past observations. Finally, the KF is especially robust to measurement noise; the observation
of any new measurement results in a reduction in the uncertainty of the state of the system. The
KF operates by repeating the following two steps:

Predict Estimate the next state of the system, given only an estimate of the current state.

Update Correct the state estimate by incorporating measurements of system properties.

In other words, the KF does the following two things: it predicts what the next state will be,
and then it corrects that prediction based on measurements. At all times the system state and
measurements are modeled using multivariate normal distributions. Initially (t = 0), the KF
begins with a user-supplied prior. In the predict step, the prior is one of two distributions that are
added to form the new state estimate; the other distribution is the predicted change in state that
comes from the model of the process. In the update step, the intermediate prior is multiplied with
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a pre-fused distribution based on measured properties of the system. The resulting distribution
becomes the new prior in the next iteration, and the process continues each time a new set of
measurements becomes available.

For all its benefits, the original KF is ill-suited for tracking a flu signal like wILI for a couple
of reasons. First, the epidemic process is nonlinear—in fact, it is a serious challenge even to un-
derstand and to describe this process (see, for example, Chapter 3). Second, there is no canonical
model of the process; instead, there are a large number of competing models of flu epidemics,
each having unique strengths and weaknesses (see, for example, Chapter 5).

Ignoring these issues momentarily, suppose that we completely give up on modeling flu. As
previously mentioned, there exists a large number of digital surveillance streams that can give an
indication of the state of the flu epidemic. It would be trivially possible to use the KF with a “no-
op” process (for example, predict that all states are equally likely) and still optimally assimilate
the available data streams. While a step in the right direction, this is, of course, less than desirable
because it leaves out valuable information about how the state evolves.

Taking the example one step further, suppose that instead of using a process model we predict
the state update and treat it as if it were a measurement. This strategy allows us to incorporate
expert knowledge of the epidemic process from any number of flu models while simultaneously
producing an optimal estimate of the state based on available measurements. In essence, we
have reduced the task of filtering to one of fusion. The KF inherently performs data fusion as
part of the update step, and I exploit this to derive a sensor fusion kernel in the next section. This
allows me to fuse any number of predictions and measurements—treating both types of input as
sensors—into an optimal (up to the assumptions previously discussed) estimate of the state of
the epidemic.

4.2.2 Derivation of the sensor fusion kernel
As previously discussed, the KF is a two-step process. These steps can be more precisely defined
in matrix notation which I will explain shortly. The predict step is:

xt|t−1 = Ftxt−1|t−1 + Btut, (4.1)

Pt|t−1 = FtPt−1|t−1F
T
t + Qt. (4.2)

And the update step is:

St = HtPt|t−1H
T
t + Rt, (4.3)

Kt = Pt|t−1H
T
t S
−1
t , (4.4)

yt = zt −Htxt|t−1, (4.5)
xt|t = xt|t−1 + Ktyt, (4.6)
Pt|t = (I −KtHt)Pt|t−1. (4.7)

These equations require some explanation. Throughout, t is a time step—an integer that
counts the number of iterations. Any object created at time t is given a subscript of t; objects
created during the previous iteration are given a subscript of t− 1. x and P are the location and

37



scale parameters (mean and covariance, respectively) of the multivariate normal distribution that
describes the state of the system. From here on, I use the term “state” to refer to x and “state
covariance” to refer to P.

In the predict equations, F is the process matrix, B is the control matrix, u is the vector
of control inputs, and Q is the covariance matrix of process (and control) noise. Equation 4.1
predicts the current state of the system, given the last state estimate. It applies the process matrix
to the most recent estimate of the state and adds the expected state change due to control inputs.
Although the control model (B) and inputs (u) are not used in this analysis, they could be used,
for example, to model the expected effects of intervention strategies. Equation 4.2 modifies the
state covariance to reflect a decrease in certainty (increase of covariance) in the system state due
to noise in the process and control models. This is achieved by projecting the most recent state
covariance through the process model and adding process noise.

In the update equations, H is a matrix that maps state space onto measurement space, R is
the covariance matrix of measurement noise, and z is the vector of measurements. Several tem-
porary variables are created before updating x and P. The first of these, S, represents uncertainty
(covariance) in measurement space (Equation 4.3). It is calculated by projecting state covariance
into measurement space and adding measurement covariance. The next, K, is the Kalman gain
(Equation 4.4). This represents the relative degree of confidence in the state inferred from the
measurement as opposed to the previously predicted state, and it is therefore a function of the
predicted state covariance and the covariance of the state after adding measurement noise. Intu-
itively, it specifies the optimum combination of the predicted state and the measured state, based
on the uncertainty of each. When the measurement is relatively more noisy than the prediction,
the Kalman gain will favor the prediction; and vice versa. The last of the temporary variables
is y, the difference between the measurement and the state projected into measurement space
(Equation 4.5). Finally, in Equation 4.6 and Equation 4.7 the state and its covariance are up-
dated by an amount determined by the Kalman gain. The new state is a mixture of the predicted
state and the measured state, and the new covariance is a scaled-down version of the predicted
covariance.

It is important to note the effect that these steps have on the state covariance. The predict
step (Equation 4.2) adds to the covariance; uncertainty is increased. On the other hand, the
update step (Equation 4.7) scales-down the covariance; uncertainty is decreased. This makes
sense intuitively because no new information is assimilated when making a prediction, so there
is no way that certainty in the state could increase (assuming an equilibrium process). Similarly,
new information, however noisy, provides more evidence for state estimate.

I now derive the sensor fusion kernel from the canonical KF equations. To begin, I attempt
to simplify the notation. First, I assume that all equations are conditional on time t. This allows
me to drop most of the subscripts—keep in mind though that all of the matrices and vectors are
time-dependent. Second, I distinguish between xt|t−1 and xt|t by introducing a simpler alias for
each. I use x̂ in place of xt|t−1 and x in place of xt|t; I use the same convention for P. Third, I
rewrite the update equations to eliminate temporary variables. Here are the simplified equations:
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x̂ = Fxt−1 + Bu, (4.8)

P̂ = FPt−1F
T + Q, (4.9)

K = P̂HT (HP̂HT + R)−1, (4.10)
x = x̂ + K(z−Hx̂), (4.11)

P = (I−KH)P̂. (4.12)

Notice that the KF combines two things: exactly one prediction and any set of measurements.
Clearly, a problem arises if no prediction is available. Is it still possible to use the KF in this
case? Similarly, it is problematic if there is more than one prediction. Do all but one have to
be discarded? Should they be combined beforehand—and how might this be done? A more
interesting case is when the line between prediction and measurement is blurred. Consider, for
example, an autoregressive (AR) model. AR is a classic method of time series prediction, but it
depends on the last several state values. To use an AR model as a prediction, the KF “state” has
to explicitly store not just the current state, but also every preceding state, up to the dimension
of the AR model. This in some sense violates the Markov property of the KF—the next state
should be conditionally independent of all past states, given the current state. On the other hand,
it is trivial to treat the output of an AR model as a measurement; but this is wrong on some
level because this “measure” contains no new information about the state of the system—it is
a function only of past states. The AR model certainly provides useful information, but is it a
prediction or a measurement?

I now derive a special case of the KF which is free from the issues discussed above. In
doing this, I show that the KF encodes a sensor fusion operation and that the prediction and all
measurements are instances of more general sensors.

The root of the problem is the prior; I have no canonical process model for flu, so it is
impossible to predict subsequent states. I want to use the KF to assimilate all available data, but it
is unclear in the classic formulation above how one might do this when the process is undefined.
To proceed, I need to put the KF equations into a workable form. I do this by rewriting the
Kalman Gain term using a matrix identity due to [138, 139] and by rewriting the state covariance
in so-called “Joseph form” [140]:

K = (P̂−1 + HTR−1H)−1HTR−1, (4.13)

P = (I−KH)P̂(I−KH)T + KRKT . (4.14)

Before proceeding further, a discussion on what it means for a process to be undefined is
needed. If the process model has no role in updating the state of the system, then the process is
not sequential. It is instead a one-step procedure that always starts from the same prior distribu-
tion. Further, I make this prior as uninformative as possible by setting it to the uniform pseudo-
likelihood over state space—a multivariate Gaussian with infinite variances. Intuitively, without
knowing how the process works, all outcomes become equally believable. Mathematically, this
suggests that the uncertainty in the estimated state approaches infinity. As the covariance of a
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multivariate normal distribution approaches infinity (or, as the precision approaches zero), the
distribution effectively becomes an unbounded uniform distribution—a flat improper prior. Fol-
lowing the example of [140], I define the situation of an unknown process model simply by
letting P̂ = ∞, or equivalently P̂−1 = 0. This follows naturally from Equation 4.9 when the
process covariance Q (uncertainty in the state due to noise in the process) approaches infinity.
Plugging this into Equation 4.13 gives:

K = (P̂−1 + HTR−1H)−1HTR−1, (4.15)

K = (0 + HTR−1H)−1HTR−1, (4.16)

K = (HTR−1H)−1HTR−1. (4.17)

Equation 4.14 is more problematic as (I−KH)P̂ = 0 ·∞. To handle this problem, I rewrite
Equation 4.14 using the properties of vector covariance:

P = (I−KH)P̂(I−KH)T + KRKT , (4.18)

P = (I−KH)cov(x− x̂)(I−KH)T + KRKT , (4.19)

P = cov((I−KH) · (x− x̂)) + KRKT , (4.20)

P = cov((I− (HTR−1H)−1HTR−1H) · (x− x̂)) + KRKT , (4.21)

P = cov((I− I) · (x− x̂)) + KRKT , (4.22)

P = cov(0 · (x− x̂)) + KRKT , (4.23)

P = KRKT , (4.24)

P = (HTR−1H)−1HTR−1RR−1H(HTR−1H)−1, (4.25)

P = (HTR−1H)−1(HTR−1H)(HTR−1H)−1, (4.26)

P = (HTR−1H)−1. (4.27)

Next, I plug Equation 4.17 and Equation 4.27 into Equation 4.11:

x = x̂ + K(z−Hx̂), (4.28)
x = x̂ + Kz−KHx̂, (4.29)

x = x̂ + Kz− (HTR−1H)−1HTR−1Hx̂, (4.30)
x = x̂ + Kz− x̂, (4.31)
x = Kz, (4.32)

x = (HTR−1H)−1HTR−1z. (4.33)

At last, combining Equation 4.27 and Equation 4.33, we come to what I call the sensor fusion
kernel of the KF (in agreement with [140]):

P = (HTR−1H)−1, (4.34)

x = PHTR−1z. (4.35)
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At this point it may be helpful to zoom out and look at the high-level picture in Equation 4.34
and Equation 4.35. What this says is that, even without prior knowledge, it is still possible to
produce an optimal estimate of the state of the system using only information from the available
measurements. As expected, this is a one-step procedure, and there is no reference to any prior
distribution. It may be helpful to draw a parallel to the formula for multiplying univariate normal
probability density functions (PDF):

σ2 =

 N∑
i

1

σ2
i

−1

,

µ = σ2

N∑
i

µi
σ2
i

.

The KF—and sensor fusion—performs the normal PDF multiplication while additionally
accounting for both the correlation structure of the measurements and the mapping from mea-
surement space to state space. Additionally, it can be shown that under specific conditions
(H = 1,

∑
β = 1), sensor fusion is mathematically equivalent to multiple linear regression.

The advantage of sensor fusion lies in the descriptive power of H in mapping between state
space and measurement space.

4.3 Proxies of flu activity in the US
The biggest challenge in nowcasting is to acquire, in real-time, reliable measurements of in-
fluenza activity—signals based on digital surveillance. Complementary to these signals are pre-
dictions—signals that model the epidemic. Whereas measurements (digital surveillance) pro-
vide new information about the world, predictions (models) only operate on lagged data. How-
ever, unlike measurements, predictions (potentially) contain valuable information in the form of
knowledge of the epidemic process. For example, we know that flu epidemics should generally
have a single, well-defined peak sometime between December and March. Unlike signals based
on digital surveillance, signals based on predictions are “process-aware”, and as such will pro-
vide a reasonable prediction of the state of the epidemic that is based exclusively on past data. In
recent years, many such signals have come and gone. I provide a survey below of the signals that
have been used to predict influenza. Of course, the distinction between measurements and pre-
dictions is not always so clear, and this is one of the main motivations for using source-agnostic
sensor fusion instead of taking a more traditional KF approach.

4.3.1 Measurements
Google Flu Trends (GFT)

GFT was a very popular indicator of flu activity based on search queries. The model was origi-
nally released in 2008 (with retrospective predictions going back to 2003) and was subsequently
updated in 2009, 2013, and 2014 [69]. After attracting a great deal of attention from both
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academia and popular media, Google discontinued GFT just before the start of the 2015–2016
flu season [72, 141, 142, 143].

This signal is somewhat unique among the digital surveillance sources in that it attempts to
directly infer current wILI. The dataset contains in-sample, or at least retrospective, predictions
from 2003w40 through around 2008w53. Out of sample predictions made in real-time are avail-
able from around 2009w01 until 2015w32—the week GFT was discontinued. Predictions are
available for many countries, including the United States. Within the US, predictions are avail-
able for all states, including the District of Columbia (DC), and around one hundred large cities.
Although this dataset is no longer being updated, it is still publicly and freely available from
Google [144].

Google Trends (GT)

GT is a service for exploring the relative popularity of search terms. It is unrelated to GFT,
other than that they are both based on search query data. There are several reasons why it is not
possible to reconstruct GFT using GT data. First and foremost, there is no official application
programming interface (API) for GT; any programmatic access to the service is likely against
the terms of service. Second, popularity is measured on an arbitrary scale that varies between
locations and time periods. Third, in the interest of privacy, an unspecified threshold is used to
hide results for queries with too little volume. Fourth, the terms used to build GFT are not public
knowledge, so any attempt to reconstruct GFT would most likely use a somewhat different set of
terms.

Even though GT is not a replacement for GFT, it is still a valuable source of data. There
have been several attempts to use GT as a signal for nowcasting and forecasting of flu and other
infectious diseases [85, 145, 146]. GT is generally available from around 2003 through the
present. Temporal and geographic resolution vary greatly depending on search volume. It is
possible, with very popular queries, to retrieve weekly values for all US states. GT is publicly
and freely available from Google [147], but accessing the data programmatically does not appear
to be officially sanctioned.

Google Health Trends (GHT)

Shortly after Google discontinued GFT, they agreed to support ongoing research in public health
and epidemiology by way of a new API—GHT. Although still in development, GHT will one
day be a superset of both GFT and GT. Like GFT, the main focus is to provide a query-based
signal related to issues of public health, including flu. Like GT, it is possible to query arbitrary
search terms across a large number of locations both inside and outside of the US. As a result,
GHT opens up the idea of “flu trends” to any number of other diseases or public health issues
thanks to the ability to query any set of health-related terms. Like GFT and GT, this signal is
available from roughly 2003 through the present.

At the time this thesis work was done, GHT could only provide a weekly signal at the level
of US states for a predefined influenza topic. These signals are what I use in subsequent analysis.
Current, ongoing extensions of this work are able to benefit from a greater selection of search
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terms as more powerful versions of the GHT API have recently been made available by the GHT
team.

HealthTweets (TWTR)

The successes and limitations of GFT inspired the search for new digital surveillance sources,
especially those based on social media. Twitter, an immensely popular microblogging service, is
an ideal candidate for such a source: tweets are incredibly frequent (hundreds of thousands per
minute), relatively easy to analyze (no more than 140 characters), often have a clearly-defined
topic (via hashtags), are occasionally geotagged (depending on device and preferences), and
can be available to the public (depending on preferences). Several attempts have been made
to estimate flu activity using Twitter [78, 148, 149]. While these developments were useful in
developing the theory of digital surveillance, it was difficult to implement and make use of these
ideas in practice.

The Johns Hopkins Social Media and Health Research Group then developed HealthTweets.org,
an ongoing, real-time signal of flu activity based on Twitter [79, 84]. This signal, TWTR, is like
the GFT of Twitter data in the sense that all of the hard work is already done—what remains is
to simply fetch the data. The hard work in this case was a set of tiered classifiers using natu-
ral language processing and other machine learning, built with a large set of manually labeled
training data. With the recent departure of GFT, TWTR is now one of the best signals available
for estimating flu activity in real-time. The data is available from the end of 2011 through the
present, at a daily resolution, and at the level of US states (and other locations). TWTR is made
for the research community, and access is subject to approval and registration [150].

Wikipedia (WIKI)

Wikipedia, the free, collaborative, and online encyclopedia, is a valuable source of information
to people around the world. What enables Wikipedia to be a potential source for digital disease
surveillance is that the Wikimedia Foundation makes available the number of visits (“hits”), per
hour, to every Wikipedia article. There is a strong correlation between wILI in the US and the
number of hits to English articles related to influenza, and several attempts have been made to
estimate prevalence of flu (and other infectious diseases) in real-time [81, 82, 83]. Unlike GFT
and TWTR, for which most of the manual work has been done and an automatic signal is readily
available, there has been no flu signal based on Wikipedia—until now.

To address this void, I created such a signal—WIKI. I intend for WIKI to be for Wikipedia
what TWTR is for Twitter and GFT was for Google. WIKI is available weekly from the end of
2007 through the present at the US National level. The WIKI signal is updated weekly on an
ongoing basis and is publicly available through the Delphi Epidata API [151].

The methodology of the WIKI signal can be summarized as follows. The number of hourly
hits for each Wikipedia article is obtained from https://dumps.wikimedia.org/other/
pagecounts-raw/. From this, a number of values are extracted. The first is the total number
of hits to all English language articles, for subsequent normalization. The rest of the values are
the number of hits for each of 54 articles discussed in [81, 83] and enumerated in [151]. These
values are stored in a database with metadata including the date and hour during which the hits

43

https://dumps.wikimedia.org/other/pagecounts-raw/
https://dumps.wikimedia.org/other/pagecounts-raw/


were recorded. Whereas previous attempts to create a flu signal from Wikipedia hits aggregated
from an hourly to a weekly resolution, I take a slightly different approach. I aggregate to the
weekly level separately for each hour of the day. The result is a set of weekly values for 54 ar-
ticles across 24 hours—1296 individual signals. To produce a single estimate of flu prevalence,
I first use (in a one-time only, preprocessing step) LASSO regression (using cross validation to
select the penalty parameter) to select the articles and hours which are most useful in estimating
wILI. I then use the selected signals and unpenalized multiple regression (updated each week) to
model the relationship between article hits and wILI as published by CDC.

There are a couple of complications that should be discussed. The first has to do with the
size of the training set. I observed that the best predictive power is achieved when some of
the training data is excluded. In particular, on any given week the best results were obtained
when only training on roughly the most recent year of data. I hypothesize that this is due to
somewhat gradual changes in information-seeking behavior, article content, and article notoriety
over time. To address this problem, I use a sliding window of 52 weeks to train a separate
regression model on each week. Another complication is the fact that values of wILI reported
by CDC are subject to subsequent revision, as previously discussed. To prevent preliminary
wILI values from reducing model power, I exclude the three most recent wILI values when
training the model. A final complication is that the Wikipedia dataset is devoid of any geographic
information. It has been common practice to make the assumption that hits to English articles
come only from the US, but this is clearly far from the truth. I am able to mitigate this to some
extent by selecting articles by hour of day (assuming that the proportion of English hits from the
US varies by hour of day), but it remains impossible for now to achieve any finer geographic
resolution.

CDC Page Visits (CDCP)

Given the correlation between Wikipedia page visits and wILI in the US, it seems likely that
information-seeking behavior in general can be used to estimate trends in public health. The
top links in Google for several flu-related queries lead, of course, to Wikipedia—but also to
CDC. CDC collects website analytics for each of their pages, and they have graciously agreed
to share some of this data with us for research purposes. To my knowledge, this is a novel—and
potentially very valuable—data source, having never before been used to estimate flu prevalence.

The raw data consists of the number of hits, per page title, per US state, per day. My goal
is to produce a unified signal from this data: a weekly estimate of %ILI within each US state.
While the data is available from the start of 2013, as of this writing the total number of distinct
page titles is 6,644. As with WIKI, it is necessary to select a subset of the most informative
pages. To do this, I used a series of heuristics to select a reasonable set of page titles for use
in subsequent modeling. I first limited my search to only the top 50 (arbitrarily) page titles by
total hits, reasoning that the signal-to-noise ratio of low-volume pages would likely be lower
than that of high-volume pages. Next, I examined the selected page titles and manually excluded
those for which I assumed traffic was not primarily driven by having flu symptoms (for example,
excluding pages specific to vaccination). With the roughly 15 remaining pages, I excluded those
with incomplete time-series (presumably having not been created until sometime after 2013).
This exercise led me to discover that page titles generally evolve in minor ways over time, and
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so I further limited my search to pages for which I could trace title changes over the entire
time period of data availability. At the end of this process, I selected the following 8 pages for
further analysis: “What You Should Know for the Influenza Season”, “What To Do If You Get
Sick”, “Flu Symptoms & Severity”, “How Flu Spreads”, “What You Should Know About Flu
Antiviral Drugs”, “Weekly US Map”, “Basics”, and “Flu Activity & Surveillance”. By visual
inspection, I noticed that hits to these pages, fit to wILI by linear regression, generally appear to
over-shoot wILI during weeks of peak activity. To mitigate this effect, I take the log transform of
the counts before further processing. Important directions of future work will be to select pages
in a more principled manner and to explore other methods of fitting page hit counts to %ILI. For
the current analysis, I aggregate page hits from daily to weekly resolution and then use multiple
linear regression to fit page counts to %ILI for each US state.

Electronic Health Records (EHR)

EHRs have the potential to be the single best real-time indicator of disease incidence [152]; they
are created with little to no lag, are not subject to backfill, exist at incredibly fine geographic
resolution (zip code at worst), can be a reliable sample of the population, and reflect clinical di-
agnosis more accurately than syndromic data. Unfortunately, these datasets are often proprietary
and are guarded as closely as trade secrets. As an example of the usefulness of EHR data, the
Aetnahealth dataset (provided by the Aetna health insurance company) has been used to retro-
spectively estimate real-time flu prevalence in the US [85]. I list this type of signal in the interest
of completeness, but I do not currently have access to any EHR data.

Flu Near You (FNY)

FNY is an example of participatory surveillance whereby users volunteer once per week to report
whether they (or others in their households) personally experienced flu-like symptoms in the
preceding week [153, 154]. The reports of ILI collected by FNY have been shown to be strongly
correlated with wILI as reported by CDC [155, 156], and this data has been used to estimate the
real-time prevalence of flu in the US [85]. The data is not publicly available, but it appears to
exist at a weekly level from around 2012 through the present at the level of zip codes (and other
locations, for example Canada). As is the case with EHRs, I do not currently have access to this
dataset, and I mention it here only for the sake of completeness.

4.3.2 Predictions
Epicast (EPIC)

Epicast (discussed extensively in Subsection 5.3.2), is a flu forecasting system that I built which
is based on collective human judgment [157]. As such, it is a participatory signal, but unlike FNY,
it is not based on participants having flu-like symptoms. Instead, it is the collective expectation
of wILI, given tentative wILI on past weeks and wILI of past seasons. EPIC is not surveillance
per se, but more of a measure of anticipation—which, as I show, can be quite accurate. EPIC is a
novel data source that is available weekly from 2014w42–2015w20 and 2015w42–2016w20 for
the US nationally and for all HHS regions.

45



Seasonal Autoregression (SAR3)

SAR3 is a regression model that, given the current week number and preliminary wILI values
of the past three weeks, provides an estimate of the final wILI value of the current week. In
other words, there are two sources of information: the current week number and recent wILI
values. Using only the wILI values results in a more general model known as “AR(3)”—an
autoregression model that uses the three most recent values. Autoregression is an extremely
general framework for time series forecasting and as such has seen application in a wide range of
settings including epidemic forecasting. The current week number, however, provides additional
information to the model. Because flu in the US is a seasonal occurrence, timing information
can be very helpful in predicting flu prevalence. SAR3 is available for the same time period and
at the same temporal and geographic resolution as wILI—ongoing weekly for the US nationally
and for all HHS and census regions. I originally designed and implemented SAR3 as a simple
baseline. Here it serves a different purpose; it provides a reasonable estimate of current wILI
given only the current week number and past wILI.

Since it may not be immediately obvious how to incorporate timing information into the
model, I now give an overview of the SAR3 methodology. Each year consists of 52 (or, once
every 5–6 years, 53) weeks, which I refer to as “epiweeks”. The absolute week number is not
a good candidate for a time signal for a couple of reasons. Foremost among these is the large
discontinuity from week 52 to week 1 that usually falls, unfortunately, in the middle of each flu
season. Intuitively, weeks 52 and 1 are similar, epidemiologically; but in a linear model, weeks
52 and 1 are more dissimilar than any other pair of weeks. It is possible to use an adjusted
week numbering system—say, for example, that weeks 1–20 are instead called weeks 53–72.
Similarly, time can be represented by year and fractional week, like 201610

52
. This scheme, while

certainly an improvement, is still less than ideal because now a pre-season week is encoded with
a value far away from a post-season week. On the surface this may sound reasonable, but recall
that pre- and post-season weeks (e.g. 2015w30 and 2016w29) are characterized by very little
flu activity and are therefore epidemiologically similar. What we really want is a way to encode
time such that all pairs of adjacent weeks are assigned a small distance. I propose the following
solution: treat week number as an angle, and use a sinusoidal description of that angle as the
measure of timing. More concretely, I produce the following two predictor variables for each
epiweek, w: x1(w) = sin(2π w

N
);x2(w) = cos(2π w

N
), where N is either 52 or 53, depending on

the year. This strategy of including pairs of sinusoidal covariates is known more generally as
harmonic regression.

There is one more complication that the SAR3 model attempts to account for: the so-called
“holiday effect”. This effect is manifested as an aberrant increase in reported wILI from the
middle of December through early January, presumably due to a change in healthcare-seeking
behavior on these weeks (for example, a reduction in the number of reporting providers and
in the number of non-urgent, and thus non-ILI, office visits). Neither season-wide timing nor
recent wILI predictors can capture this effect well, so I additionally include a set of indicator
variables for weeks 50–1 (or weeks 51–1 for years with 53 weeks); each takes a value of 1 on
its assigned week and 0 on all other weeks. These week-specific variables allow the model to
add a high-resolution offset to wILI during the major holidays in December and January. It is
unclear whether the latent process underlying the holiday effect has an additive or multiplicative
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(or some other) effect on wILI, but in practice I find that the additive approach of the SAR3
model successfully reduces the error of the estimate.

In total, the SAR3 model consists of 9 predictor variables: three based on recent wILI, two
based on season-wide timing, and four based on week-specific timing.

The Archetype (ARCH)

The Archetype (discussed in Appendix B), is another system for flu forecasting that I built.
Unlike EPIC, it is purely data-driven and requires no human intervention. Therefore, ARCH is
not surveillance at all—it is a forecast. ARCH is a novel data source that is available weekly
from 2003w40–2016w20 for the US nationally and for all HHS and census regions. However,
the ARCH system does not produce forecasts during the off-season, and so no values are reported
between epiweeks 21 and 39, inclusive, on all years.

4.3.3 Summary
Given all of the above proxies of flu activity (both surveillance-based and prediction-based), the
goal is to forecast the final wILI value eventually reported by CDC.
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Signal Type Time Period Resolution Access
GFT Search query 2009–2015 US States Public

GT Search query not used not used Restricted

GHT Search query 2004–Now US States Restricted

TWTR Social Media 2012–Now US States Restricted

WIKI Info. Seeking 2007–Now National Public

CDC Info. Seeking 2013–Now US States Restricted

EHR Insurance Claims not used not used Commercial

FNY Participatory not used not used Restricted

EPIC Participatory 2014–2016 Regional Public

SAR3 Prediction 1997–Now Regional Public

ARCH Prediction 2003–Now Regional Public

Table 4.1: Summary of digital surveillance and forecasting signals. Time Period and Resolu-
tion columns describe only the datasets that I was able to use for nowcasting; full datasets may
have more extensive coverage and finer granularity.

4.3.4 Fitting digital surveillance to (w)ILI

Most of the previously described flu proxies are not pre-fitted to (w)ILI, and those that are often
exhibit systematic bias. I adopt the following strategy for producing an estimate of (w)ILI sep-
arately for each data source and location. I use weighted (potentially multiple) linear regression
to fit the signal to either wILI (for national and regions) or %ILI (for states). Each fitted version,
which I call a “sensor”, is then used as input to sensor fusion in which it is assumed that all
inputs have zero bias and IID Gaussian noise over time. The regression weights were designed
with the following goals: (a) samples at or near to the same week of year should be given more
weight than samples on more distant weeks, (b) sample weight should fall exponentially as time
passes, and (c) very recent samples should be penalized as wILI on these weeks is subject to re-
vision. I encode these objectives in the following function of the number of weeks, dw, spanning
a previously observed sample and the current week (plotted in Figure 4.3):
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year = 52.2,

a =
1

20
+

19

20
exp

(
−(min(dw%year, year− dw%year)/2)2

)
,

b = 2−(dw/year),

c = 1− 2−(dw/1),
weight(dw) = a · b · c.

Figure 4.3: Regression weights for fitting signals to (w)ILI. Each digital surveil-
lance signal is fit, separately for each location, to either wILI or %ILI (depending on
location) using multiple linear regression with weights plotted above. Weights are
shown here over a five year period, however the weight vector is generated at runtime
with length equal to the number of past observations. Weights are intended to cap-
ture seasonal effects, to account for backfill, and to be robust to temporally evolving
relationships. Each fitted signal becomes a “sensor”—an approximately unbiased and
appropriately scaled estimate of (w)ILI.

Figure 4.4 compares sensor readings of all eight flu proxies to US national wILI from 2011–
2016. This highlights some of the main challenges in this data assimilation problem, in particular
that sensors are noisy and intermittently available. More difficult to illustrate is that sensors also
cover different geographic regions and resolutions, and are likely correlated. Sensor fusion,
through careful construction of matrices H and R, is capable of handling all of these issues.

There is one remaining complication that has not been addressed: while population-weighted
%ILI (wILI) is publicly hosted by CDC for the US as a whole and for various regions within the
US, %ILI is not publicly available at the level of US states. To fit a given signal to %ILI requires
that at least some values of %ILI are known. CDC, through agreement with participating states,
has agreed to share %ILI with us from 2002–2015 for 26 states. While this is a fantastic dataset,
it is insufficient for fitting signals in the missing states. Fortunately, most states publicly post
tables or charts of %ILI online. On 2015w35, I manually visited each of these 51 (including DC)
websites and scraped %ILI when it was available. In total, I gathered at least one flu season of
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Figure 4.4: Comparison of “ground truth” (wILI) and sensor readings for the US
from 2011–2016. Both charts depict the same data but highlight different aspects.
Top: a line chart of wILI as a function of time, to highlight sensor noise. Bottom: a
timeline shaded by signal intensity, to highlight sensor availability.

data for 43 states. Unfortunately, the conversion process is lossy and error-prone, and I found that
scraped values do not always exactly agree with official values (most, however, closely agree).
Additionally, there are 5 states for which I have neither an official %ILI report nor a scraped
%ILI estimate.

I devised a strategy to resolve conflicts between official values and scraped values and to infer
%ILI in missing states. The intuition is as follows. First, I strongly trust values shared by CDC
and only weakly trust values that I manually scraped. Second, HHS and census regions—for
which wILI is known—is a linear combination of %ILI in constituent states, and it is possible
to infer missing values for one state when the remaining states in a given region are known.
Together, these two ideas led me to an optimization problem: separately for each week, estimate a
value of %ILI in each state such that (a) official state %ILI, if available, is very close to estimated
%ILI, (b) scraped state %ILI, if available, is at least somewhat close to estimated %ILI, and (c)
the population-weighted sum of estimated %ILI in a region is very close to official wILI, for
all regions. More precisely, I somewhat arbitrarily penalize squared deviation from official %ILI
with weight 1, from scraped %ILI with weight 5, and from regional wILI with weight 1. I use the
Nelder-Mead gradient-free optimization method [158] to find an assignment for all state %ILI
values given an objective function implementing these penalties. I now have wILI for the US as
a whole, wILI for the HHS and census regions, and reasonable estimates of %ILI for all states.
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4.4 Nowcasting influenza within the US
The primary aim of this chapter is to nowcast (w)ILI in the US. To do this, I use the sensor
fusion methodology, digital surveillance signals, and predictive signals described above. In what
follows, I show how the design matrices are constructed for the problem at hand, assess accuracy
of nowcasts relative to known and estimated wILI and %ILI, and perform sensitivity analysis by
selectively withholding portions of the available data.

4.4.1 Digital and predictive surveillance in the sensor fusion framework
The sensor fusion kernel in Equation 4.34 and Equation 4.35 makes use of three things: H to
map from state space to measurement space, R to describe the covariance of sensor noise, and z
which are the sensor readings at any given point in time. Before construction of H, it is necessary
to precisely define what is meant in this context by state and measurement spaces. US states, US
regions, and the US as a whole form a hierarchy wherein each tier (states, regions, national) is a
linear combination of the locations in lower tiers. I define state space to be the finest geographic
resolution from which (w)ILI in all locations can be calculated: state space is therefore the 51
US states and DC (R51). Note that this definition assumes that at least one sensor is reporting at
the level of US states. If this is not the case (for example, perhaps only regional sensors were
available at runtime) then state space will be US regions, or in the worse case, the US as a whole.
In any case, state space is the lowest tier in the location hierarchy that is available at runtime.

Measurement space is defined by what inputs are available at runtime, the elements of z. As
this depends on which data streams happen to be available, it is not possible to give a specific
assignment to measurement space in general. Measurement space will be of the form: (s, l)∀l ∈
locationss∀s ∈ sources. In words, measurement space is the set of all source-location pairs,
where locations vary by source. For example, on 2015w01 all eight sources were available, and
there were a combined total of 308 input sensors (R308).

Up until this point it has been implicitly assumed that the end goal was to estimate state space.
In reality, I am interested not only in estimating %ILI in all US states, but also in estimating
regional and national wILI. Due to the hierarchal nature of US locations, regional and national
wILI is simply a linear combination of %ILI in US states. I now modify the sensor fusion kernel
to produce estimates for all locations by introducing a matrix, W, mapping state space to output
space (nationally (1), regionally (19), and all states with DC (51); 71 locations in total; R71):

S = WPWT , (4.36)

S = W(HTR−1H)−1WT , (4.37)
y = Wx, (4.38)

y = WPHTR−1z, (4.39)

y = W(HTR−1H)−1HTR−1z. (4.40)

Under this new formulation, y and S are together the mean and covariance of a multivariate
normal distribution describing estimated (w)ILI in all locations. Therefore, y provides a point
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prediction of (w)ILI for each location, and the diagonal of S provides the associated variance
of each prediction. A graphical overview of the complete sensor fusion process is shown in
Figure 4.5.

Figure 4.5: Overview of the sensor fusion and extraction process. Sensors (left;
measurement space) are “fused” to produce an estimate of the latent system state (mid-
dle; state space). The desired outputs (right; output space) are then “extracted” from
the estimated state. A multivariate normal distribution represents the estimate within
each space. Matrices H and W map from state space to measurement and output
spaces, respectively.

Now it is possible to define H and W. Both matrices map from state space to another space,
with columns corresponding to states (“states” in the sense of state space, which coincidentally in
this case is US states). The rows of H correspond to measurement space (individual sensors), and
the rows of W correspond to output space (all US locations). By nature of the location hierarchy,
all rows of H and W sum to 1. Additionally, H has full column rank; in other words, HTH is
invertible. (Otherwise some states would be indeterminate.) Finally, the element values of both
H and W are the fraction of each column’s (j) population out of each row’s (i) population, as
in:

Hij =

{
populationj, if j ∈ i
0, otherwise∑

k∈i populationk
.
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The final task is to produce R, the covariance of sensor noise. It is trivial to estimate this
when no data are missing and there are more observations than sensors; in practice, however,
sensors are intermittently available and the number of sensors is typically much greater than the
number of weekly observations. We are faced with two separate problems: missing data and
high-dimensional estimation. A large number of strategies to address these issues are described
in the literature, some of which include [159, 160, 161, 162, 163, 164]. Here, for the sake of
simplicity and speed, I employ the methods of [165] for handling missing values and [166] for
regularization.

By these two methods, I estimate R as follows. First, I compute the covariance between each
pair of sensors over the weeks on which they are simultaneously available. It is important to note
that the resulting pairwise covariance matrix, R̂, is not guaranteed to be positive semidefinite
(PSD). Second, I find the smallest value of α ∈ [0, 1] such that R = (1 − α)R̂ + αdiag(R̂) is
PSD. Finally, I shrink the estimate further towards the diagonal matrix of sensor variances as this
seems to help in practice, presumably by further avoiding overfitting. To do this, I somewhat
arbitrarily set β = 3

4
α + 1

4
1. My final estimate is a blend, with weight β, between R̂ and

diag(R̂). This matrix is guaranteed to be PSD and invertible, and it has the added benefit of
using all available data without imputing missing values.

At last, all components have been defined, and what remains is to run the sensor fusion kernel
to estimate (w)ILI in the US. I do this now, ongoing and in real-time, every week. These nowcasts
are publicly available via the Delphi Epidata API [151]. Planned future work includes making
a public-facing web interface for visualizing these estimates. I have also produced retrospective
nowcasts for all US locations from 2011–2016, and below I assess the accuracy of the sensor
fusion methodology using these estimates.

4.4.2 Results and comparative analysis

Figure 4.6 compares “ground truth” and nowcasts for all locations. I provide this figure not to
make a statement about accuracy, but instead to illustrate the final output of the sensor fusion
framework for flu nowcasting. Intermittent, noisy, correlated, and geographically distinct signals
from a variety of online and offline sources are fused into a unified estimate of flu activity within
each location. If the noise of each sensor relative to ground truth was truly zero-mean IID Gaus-
sian, then the nowcast would be optimal in a least-squares sense. This is almost certainly not the
case in reality. However, by careful design of the fitting procedures previously described, it is
hopefully not too far from the truth.

I use the following metrics to assess the accuracy of nowcasts: Pearson correlation coefficient
(PCC; best=1), mean absolute error (MAE; best=0), root mean squared error (RMSE; best=0),
and hit rate (HR; best=100). PCC describes correlation, MAE and RMSE describe error, and HR
describes the fraction of predictions that change in the same direction as ground truth. Given
ground truth, x, and nowcasts, y, these are defined as:
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Figure 4.6: Retrospective out-of-sample nowcasts for all US locations from
2011w30 to 2016w20. All plots show “ground truth” (either wILI or %ILI, depend-
ing on location) in black and corresponding nowcasts in orange. Top: US national.
Bottom: HHS regions (shaded light red), Census regions (shaded light blue), and US
states (shaded light green).

PCC =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

MAE =
1

n

n∑
i=1

|xi − yi|,

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)2,

HR = 100×
∑n

i=2

(
sign(xi − xi−1) == sign(yi − yi−1)

)
n− 1

.
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I show these metrics, averaged over locations in each tier (national, regional, states), for the
full nowcasting period of 2011w30–2016w20 in Table 4.2. Accuracy decreases as geographic
resolution increases. This is to be expected for a number of reasons. First, four of the sources
(WIKI, EPIC, SAR3, ARCH) are unavailable at the level of US states; all, however, are available
nationally. Second, locations in higher tiers are able to incorporate detailed information from
locations in lower tiers. For example, wILI in the 10 HHS regions can be used to compute
national wILI, but the reverse is not true. Third, because of sampling and other artifacts, (w)ILI
is inherently more noisy at finer geographic resolutions and is therefore more unpredictable.
Finally, there is a significant caveat to recall at the state level: official %ILI is unknown for 25
states, and for those states I use estimated %ILI as ground truth.

Tier # Locs PCC MAE (%ILI) RMSE (%ILI) HR (%)

National 1 0.970 0.124 0.253 75.3
Census 9 0.953 0.201 0.342 61.0
HHS 10 0.950 0.205 0.337 60.0
States 51 0.887 0.340 0.543 54.3

Table 4.2: Nowcasting accuracy by location. Metrics were computed over 252 weeks spanning
2011w30–2016w20.

To contextualize these results, I compare these nowcasts with various other signals and sys-
tems at the national level. For fair comparison, I truncate the nowcast in time so that metrics
are compared over the same time periods. In what follows, the sensor fusion nowcasting system
described above is labeled “Delphi-SF”.

First, I compare the nowcast with each of the eight national sensors (Figure 4.7). In other
words, I compare the system inputs with the system output. In all of PCC, MAE, and RMSE,
Delphi-SF has better performance (higher correlation, lower error) than the eight national sen-
sors. In HR, Delphi-SF is only surpassed by GHT and ARCH. These results serve as a nice
sanity check. The output of the system should be, on average, more accurate than the inputs to
the system; I find that this is the case.

Next, I compare the nowcast with CDC’s first-posted value of wILI (“Prelim.”) (Table 4.3).
These values are posted on (or after) Friday the week following the observed week. These pre-
liminary values are subject to change over time as more provider reports are collected; this is the
backfill effect. Accuracy of the nowcast approaches, but does not exceed, the accuracy of pre-
liminary wILI. However, to put this in perspective, the nowcast is available almost immediately
after the observed week has ended—as early as Sunday.

System PCC MAE (%ILI) RMSE (%ILI) HR (%)

Delphi-SF 0.970 0.124 0.253 75.3
Prelim. 0.994 0.125 0.152 76.5

Table 4.3: Comparison of nowcast and preliminary wILI. Metrics were computed over 252
weeks spanning 2011w30–2016w20.
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Figure 4.7: Comparison of sensor fusion system inputs (national sensors) and out-
put (national nowcast). For each source, metrics for both that source and Delphi-SF
were computed over the period of time during which the source was available, as in-
dicated in the top-left corner of each chart. The displayed bounds for each metric are
shown at the bottom of the figure. (In PCC and HR, larger is better; in MAE and
RMSE, smaller is better.)

Finally, I compare with the “Support Vector Machine regression with Radial Basis Function
kernel” (SVM-RBF) nowcasting system of [85] (Table 4.4). They use five digital surveillance
signals, all of which I have previously discussed: FNY, EHR, GT, GFT, and TWTR. They pro-
duce nowcasts only at the national level, for the period spanning August 2013 to February 2015.
It is difficult to compare these systems directly given the significant differences in surveillance
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inputs (EHR and FNY) and the small number of locations (one) and seasons (two) for which
nowcasts are available. In any case, the accuracy of the two systems appears to be quite sim-
ilar. The most obvious advantage of Delphi-SF is that estimates are produced at much finer
geographic granularities. A more subtle advantage is that Delphi-SF handles missing data, an
issue which has not yet been addressed in the SVM-RBF framework.

System PCC MAE (%ILI) RMSE (%ILI) HR (%)

Delphi-SF 0.987 0.118 0.198 72.4
SVM-RBF 0.989 — 0.176 69.4

Table 4.4: Comparison of nowcasting frameworks. Metrics were computed over 77 weeks
spanning 2013w35–2015w06. SVM-RBF metrics are from [85] (MAE was not reported).

4.4.3 Sensitivity analysis
In what follows, I explore the effects of two types of perturbations on nowcasting accuracy. The
first is a set of “ablation” experiments in which individual sources are removed. The second is a
set of “abscission” experiments in which sensors at individual geographic tiers are removed.

I perform ablation experiments separately for each source as follows. I record all weeks
for which the source of interest is available, and only for those weeks I run the sensor fusion
framework under two different settings. The first is the standard all-available-sources sensor
funsion as before (“Delphi-SF”). The second uses all available sources except for the source of
interest. In this way it is possible to see the effect of removing each source from the mixure
of sensor fusion inputs. The results of these experiments measured nationally are shown in
Figure 4.8.

Ideally, withholding any source should not improve accuracy; accuracy should either de-
crease, or remain approximately unchanged. In most cases, I find that this is the case, however
there are some exceptions. Removing WIKI, EPIC, SAR3, and ARCH results in uniformly lower
accuracy (lower correlation, higher error). Removing GFT, GHT, and CDCP yields mixed re-
sults. Removing TWTR results in uniformly higher accuracy; this indicates that the sensor fusion
framework is relying too heavily on this source. Improved estimation of the noise covariance ma-
trix R may help to alleviate this problem.

I perform abscission experiments over geographic tiers as follows. In normal operation,
the sensor fusion method takes as input a large set of sensors from the eight sources. These
sensors can be classified by one of three geographic tiers: national, regional, and states. In these
experiments I withhold the sensors of various tiers to study the effect of input (sensor) resolution
on output (nowcast) accuracy, at the national level. I exhaustively test all 23 − 1 combinations
of tiers, excluding the degenerate case of no input. For fair comparison, I calculate and assess
nowcasts during 2014w42–2015w20 as this is the only period of time in which all eight sources
were simultaneously available. The results of these experiments are shown in Table 4.5.

By all measures, the most accurate nowcast was produced when all tiers were enabled (“N+R+S”).
This is a good sanity check because, as stated before, witholding data should not improve accu-
racy. By similar reasoning, it is good to see that, in general, accuracy improves when including
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Figure 4.8: Sensor fusion ablation experiments. For each source, metrics for Delphi-
SF, both with and without that source, were computed over the period of time during
which the source was available, as indicated in the top-left corner of each chart. The
displayed bounds for each metric are shown at the bottom of the figure. (In PCC and
HR, larger is better; in MAE and RMSE, smaller is better.)

sensors in higher resolution tiers. (See: “N” → “N+S”, “R” → “R+S”, “N” → “N+R”, and ,
“N+R”→ “N+R+S”.) In comparing individual tiers, the regional tier (“R”) is, perhaps surpris-
ingly, more accurate than the national (“N”) tier, which is in turn more accurate than the state
(“S”) tier. It is difficult to interpret the significance of this observation given that the set of
sources within each tier differs (recall Table 4.1).
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Input State Output PCC MAE RMSE HR
N N N 0.987 0.162 0.243 80.0
N+R R N+R 0.988 0.142 0.207 76.7
N+R+S S N+R+S 0.988 0.137 0.203 80.0
N+S S N+R+S 0.986 0.138 0.215 80.0
S S N+R+S 0.979 0.162 0.267 73.3
R+S S N+R+S 0.988 0.139 0.205 76.7
R R N+R 0.988 0.145 0.207 73.3

Table 4.5: Sensor fusion abscission experiments with all sources. Metrics were computed over
31 weeks spanning 2014w42–2015w20. The “Input” and “Output” columns represent the tiers
for which measurements and nowcasts are available, respectively. The “State” column represents
the geographic resolution of latent state space. “N”: US National (1). “R”: HHS and census
regions (19). “S”: US States (51).

To address the issue of having a different set of sources within each geographic tier, I ran ad-
ditional abscission experiments using only the data sources that are available for all tiers: TWTR
and CDCP. These sources are jointly available from roughly 2013w30 through the present. The
results of these experiments are shown in Table 4.6. Here I find that accuracy by PCC, MAE,
and RMSE increases from lower to higher geographic resolutions. HR is lowest for the national
tier and highest for the regional tier. Collectively, these results agree with my intuition that in-
creasing the resolution of the inputs, which has the effect of increasing the resolution at which
the latent state space is modeled, should generally increase the accuracy of the output.

Input State Output PCC MAE RMSE HR
N N N 0.974 0.167 0.247 71.6
R R N+R 0.976 0.145 0.246 73.8
S S N+R+S 0.977 0.135 0.227 72.3

Table 4.6: Sensor fusion abscission experiments with selected sources. Metrics were com-
puted over 142 weeks spanning 2013w30–2016w15. The “Input” and “Output” columns rep-
resent the tiers for which measurements and nowcasts are available, respectively. The “State”
column represents the geographic resolution of latent state space. “N”: US National (1). “R”:
HHS and census regions (19). “S”: US States (51).

Finally, it may be helpful to contrast these results with those in Table 4.2. When the inputs are
fixed and accuracy is measured over tiers of varying resolution, accuracy increases as resolution
decreases. When the resolution of the input is varied and accuracy is measured over a fixed
tier, accuracy increases as resolution increases. The difference between these two observations,
though subtle, seems to agree with intuition.
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4.5 Final considerations
Early in this chapter I derived the sensor fusion kernel from the Kalman filter. Although I did
not know it at the time, this result was known at least as early as 1997 [140]. What I discovered,
it seems, was a different path from start to finish. Along the way, however, I was able to prove
the equivalence of special cases of sensor fusion and multiple linear regression, which may be
a novel—though somewhat orthogonal to this thesis—result. What is both novel and central to
my thesis is the application of the sensor fusion methodology to flu surveillance data for high
resolution nowcasting.

While most previous nowcasting attempts have focused on a single digital surveillance stream
[66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], I instead aim to use all
available evidence, combining both digital surveillance and short-term forecasts. To accomplish
this goal with a modest amount of historical data, I was forced to devise a general fitting strategy
for all signals to (w)ILI. There is significant future work to be done in fitting each of these
signals to (w)ILI beyond my simple (but reasonable) attempt. In particular, the GHT and CDCP
datasets are entirely novel, and there is undoubtedly a large and untapped potential in each of
these sources. A closely related task is to optimize the selection of articles for WIKI and pages
for CDCP. I made a reasonable attempt at both, but it is important to note that the selections I
made (using LASSO and manual inspection for model selection) are likely far from optimal.

Similarly, I present a bona fide attempt to reconstruct historical %ILI at the US state level
using a mixture of evidence from a number of official and unofficial sources. However, the
problem of unknown %ILI continues going forward in time, and this is an important direction
for future work. The ideal solution to this problem is, of course, increased data sharing; however,
this may not be possible. In that case, it will be important to either estimate state %ILI or to
devise a method for fitting signals to %ILI when %ILI is only available in the past.

Another direction of future work is to improve the estimation of the noise covariance matrix
R. The performance of sensor fusion depends critically on having an accurate estimate of this
covariance. This is unfortunately a nontrivial task in this setting due to both the intermittency
of surveillance inputs and the very high dimensionality of the input compared to the number of
weekly observations. One possible approach is to select the β blending parameter through an
automated process like cross validation. Alternative strategies for estimating the sensor noise
covariance (or precision) matrix may help to improve the accuracy of nowcasts, especially if the
resolution of the latent state is to be further increased.

This leads to yet another direction of future work: increasing the resolution beyond US states.
At least two sources (GFT and TWTR) report at a sub-state level, and this data is left, for now, un-
used. Similarly, some sources are available at a higher temporal resolution than what I currently
use. For example, GHT, TWTR, and CDCP are available daily; WIKI is available hourly. Al-
though it may not be immediately obvious how to incorporate these data streams into the current
framework, it is certainly desirable to produce nowcasts at as high of a resolution as possible.

Looking forward, the purpose of nowcasting is to provide timely and accurate situational
awareness. While the implementation details are important, the way in which the results are
used is equally important. As previously mentioned, these nowcasts are currently published in
real-time through our API [151]. It is hoped that these nowcasts will be of use to the broader
public, and to this end a web interface is needed. In the meantime, the nowcasts are fed as input
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into the Epicast forecasting system—one of the main topics of Chapter 5.
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Chapter 5

Forecasting Influenza Epidemics using
Statistical Models and Human Judgment

The reality in forecasting is that some of
the time you are going to be wrong, and
some of the time you are going to be badly
wrong. You try to make it so that those
bad forecasts are less and less frequent and
that reliable, accurate forecasts become
more the norm.

Jeffrey Shaman

Much of this chapter is based on [167, 168].

5.1 Learning from the past
In temperate regions of the world, flu epidemics occur annually in the cold winter months. This
is of great interest to public health, and in the US, CDC collects and publishes several indicators
of flu activity every week, including in particular weighted percent influenza-like illness (wILI).
Since 1997, CDC has collected and published wILI for the US as a whole and for the 10 HHS re-
gions and 9 census regions within the US. The annual repeating pattern of flu epidemics becomes
evident when plotting this data as a function of time (Figure 5.1).

Each epidemic is unique to some extent, but they all share some characteristic features. Con-
sider the national timing (peak week) of each flu season. In each season (ignoring the 2009
pandemic) the peak week is observed between December and March. The maximum value of
wILI within each season (the peak height) falls between 2% and 8%. There is usually one very
strong peak, and possibly one or two smaller peaks. There is generally a large spike in wILI
around the end of December and, to a lesser extent, around the end of November; these are the
result of the “holiday effect”, a measurement artifact. In several seasons, there is a small bump
around March; this is usually due to a secondary outbreak of Influenza B. These are just a few
examples—it is probably possible to find several more.
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Figure 5.1: Weekly time series of wILI in the US. Data source: CDC/ILINet.

Given all of these commonalities, is it possible to make some kind of educated guess about
the shape of the current epidemic? This is exactly the idea underlying the methods for epidemi-
ological forecasting in this chapter.

5.2 An intuitive approach

5.2.1 Predictions, forecasts, and accuracy

There is an important distinction to be made between a prediction and a forecast. These words
are often used interchangeably elsewhere, but in this thesis I use them to mean subtly different
things. Of course, both make a statement about the future, but the difference has to do with
(un)certainty. A prediction is a single point (technically, a single outcome), and it provides no
indication of certainty. In the discrete case, it may assert that “wILI will peak on week 5”, but it
does not say anything at all about the possibility of wILI peaking on any other week. The more
general continuous case is similar; a prediction makes an absolute statement about the future
and says nothing about other potential outcomes. A forecast, on the other hand, is essentially
the opposite; a forecast assigns a probability to all possible outcomes, but it makes no claim as
to which particular outcome will take place. For example, a forecast might say “there is a 20%
chance that wILI will peak on week 4; 70% on week 5; and 10% on any other week of the year”.

This raises a question: which is better? Continuing with the example from above, suppose
it eventually becomes known that wILI peaked on week 5. The prediction is certainly correct,
but is the forecast correct? Suppose instead that wILI peaked on week 4. Now the prediction is
definitely wrong, but what about the forecast? While a prediction can be correct or incorrect, a
forecast cannot be said to be correct or incorrect, but only more or less accurate. Clearly, there is
a need for a well-defined measure of accuracy.

For numerical predictions, one such measure of accuracy is the absolute size of the error.
When there are many such predictions (for example, predicting wILI on the next N weeks),
mean absolute error (MAE) tells, on average, how far the prediction was from the truth. Another
measure is squared error. Compared to absolute error which treats all errors equally, squared
error penalizes large errors much more strongly than small errors. With many predictions, root
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mean squared error (RMSE) gives an indication of the overall error. Both of these values are
measured are in units of the original prediction; if wILI is being predicted, then MAE and RMSE
will both be measured in units of wILI. Since these are both direct measurements of error, a value
of 0 represents a perfect prediction. Given true outcomes y and predictions ŷ, MAE and RMSE
can be written as:

MAE =
1

N

N∑
i=1

|yi − ŷi| ,

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2.

The gold standard for assessing forecast accuracy is the log score. A forecast consists of a
set of mutually exclusive and jointly comprehensive outcomes and their associated probabilities.
The log score is defined as the logarithm of the likelihood assigned to the outcome that actually
happened. When there are many forecasts available, the mean log likelihood (MLL) is used
to provide a combined likelihood score. Unlike MAE and RMSE, MLL is not measured in
the units of the target being forecasted. Instead, it is measured in units that depend on the
base of the logarithm used, which in the case of the natural logarithm is nats—natural units
of information. Because the logarithm gives a negative number for values less than 1 (which is
true for probabilities), log score is a negative value. Negating log score gives a positive number
known as surprisal [169]. With either measure, a perfect forecast is given a score of 0. Given
true outcomes y and a set of forecasts f , MLL can be written as:

MLL =
1

N

N∑
i=1

log Pr(yi | fi).

So to the original question: which is better? Predictions and forecasts provide different state-
ments about the future, both of which are useful. A forecast, however, has more information
than a prediction, and it is easy to derive a reasonable prediction from a forecast. For example, a
prediction could be the forecasted outcome with highest probability—in other words, the distri-
bution’s mode. It is impossible, however, to produce a forecast given only a prediction. Consider
also that a forecast is not limited to a unimodal distribution; it can be any shape with any number
of modes. A prediction, however, is unable to capture anything other than a single point. For
these reasons, it is preferable to have both, if possible; otherwise a forecast is preferred. Unfor-
tunately, as I show below, it is often much more difficult to generate a full forecast than it is to
predict a single value. Many strategies begin with a method of generating predictions and are
then expanded to provide a forecast.

5.2.2 A first attempt
Suppose it is currently epiweek 2016w50. The time series of wILI up through epiweek 2016w49
is available (there is a 1–2 week lag in the reporting and publication process), and a prediction of
wILI is requested for each week through the rest of the season—up to week 20 of the following
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year, 2017w20. One good place to start is to find which past seasons appear to be most similar
to the current season. In other words, find the seasons where wILI on epiweeks, say, w40–w49
approximately match the current season’s wILI on the same epiweeks. Once these have been
identified, a reasonable prediction could be this: wILI on epiweeks 2016w50–2017w20 will be
the average wILI of the selected past seasons on the same weeks. The essential hypothesis here
is that the future will resemble—at least to some extent—the past.

This simple idea underlies a diverse set of forecasting methodologies, including the Pinned
Spline (SP), Empirical Bayes (EB), and Epicast (EC) methods. A brief overview of the spline
method is given in Appendix A; I describe the latter two below.

5.3 Frameworks for epidemiological forecasting

5.3.1 An empirical Bayes approach

The initial empirical Bayes idea was due to Ryan Tibshirani and Roni Rosenfeld;
Logan Brooks, David Farrow (myself), and Sangwon Hyun contributed significantly
to the implementation of this idea. The empirical Bayes method was one of our en-
tries in CDC’s 2013–2014 flu forecasting contest [86]—this is the version described
in depth in [167] and which I describe more succinctly below. The empirical Bayes
method has since been improved in many ways, most of which are due to Ryan Tib-
shirani and Logan Brooks. These improved versions have been used as entries in
CDC’s 2014–2015 and 2015–2016 flu forecasting contests and in OSTP’s dengue
challenge.

The empirical Bayes (EB) method can be summarized with the following sequence of oper-
ations:

1. Build a model of past seasons.
From each wILI trajectory of past seasons, create a smoothed trajectory.

2. Form a prior distribution of trajectories.
Create versions of past smoothed trajectories that have been altered in various ways.

3. Estimate wILI on past weeks of the current season.
Use a mixture of traditional and digital surveillance to build a partial trajectory.

4. Build a posterior distribution of trajectories.
Weight samples from the prior based on similarity to current season’s partial trajectory.

5. Report prediction and forecast for each target.
Measure target values on posterior trajectories and estimate their distributions.

Because wILI is an indirect and inherently noisy measurement of true influenza activity, it is
desirable to model instead the underlying (but latent) signal which wILI approximates. This is
modeled in the EB method as a smooth curve through the observed wILI time series. There are
several methods that can be used to produce a smooth version of these curves: moving averages,
kernel smoothers, smoothing splines (as in Appendix A), and many others. Here, we decided to
use a relatively recent method called trend filtering [170].
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Trend filtering has a couple of properties that make it desirable for smoothing wILI trajecto-
ries. First, it automatically, and more importantly adaptively, determines the amount of smooth-
ing to apply over the time series. This is especially helpful because wILI trajectories before and
after the epidemic are already relatively smooth, and a constant smoother may over-smooth these
areas. On the other hand, the noise during the epidemic, and especially around the peak of the
epidemic, is much higher, and a constant strength smoother is prone to under-smoothing this
portion of the trajectory. Second, most smoothing methods have the undesirable side effect of
pulling the peak wILI value down. (They also pull the minimum wILI value up, but this is less
concerning since it is modeling the peak—not the trough—that is of greatest interest.) Trend
filtering is capable of preserving the extreme values of the trajectory, which is critically needed
since true wILI could be higher—not just lower—than observed wILI on all weeks, including the
peak week.

The output from the smoothing process is twofold; in addition to smoothed trajectories, it
also produces an estimate of the magnitude (standard deviation) of the noise, τ . Therefore, after
this step we end up with a set of smooth curves and their associated noise terms, which together
form the basis of our prior (Figure 5.2).

Figure 5.2: Trendfiltered trajectory of selected seasons. Trendfiltering gives a
smooth model of latent influenza-like illness and an estimate of the magnitude of mea-
surement noise.

Having formed a model of the trajectory of past seasons, the next step is to build a prior
representing the space of all possible wILI trajectories. The key assumption here is that any
wILI trajectory can be thought of as a variation on one of the past trajectories. These variations
include five choices and transformations described below and illustrated in Figure 5.3.
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1. Starting shape.
Select uniformly at random the smooth trajectory of a past season.

2. Peak magnitude.
Select uniformly at random the peak wILI value. The bounds of this range are defined
by an unbiased estimate of a uniform distribution given empirical peak wILI values of
past seasons. The trajectory is then scaled such that the original peak matches the selected
peak. However, the scaling is not applied to wILI values below the region-specific baseline
defined in advance by CDC.

3. Shift in time.
Select uniformly at random the week on which wILI reaches its peak value. The bounds
of this range are defined by an unbiased estimate of a uniform distribution given empirical
peak weeks of past seasons. The trajectory is then shifted such that the observed peak
week falls on the selected week.

4. Epidemic pace.
Select uniformly at random a scale parameter in the time dimension from 75% to 125%
speed. A slower pace corresponds to a longer epidemic duration, and a faster pace corre-
sponds to a shorter epidemic duration. The trajectory is then scaled by the selected value,
centered at the peak week—this operation does not change the peak week or height.

5. Inject noise.
Select uniformly at random the noise magnitude of a past season, and add noise (∼ N (0, τ))
to the current trajectory.

Figure 5.3: A prior over wILI trajectories is built through a series of transforma-
tions of observed trajectories. To begin, a random season is selected; this figure uses
the 2013–2014 national season as an example (thick, aqua). Once a starting trajectory
has been selected, it is altered (thin, gray) by (A) scaling peak height, (B) shifting peak
week, (C) altering epidemic pace, and (D) injecting noise. For illustrative purposes,
operations are shown independently; when generating a sample trajectory at run-time,
operations are applied sequentially.

Everything up to this point—smoothing past trajectories and defining a prior distribution over
trajectories—has been a function of the data that is available at the start of each flu season. It is
therefore an off-line process that just needs to be performed a single time. These steps together
make up the empirical portion of the EB method. The remaining tasks—estimating recent wILI,
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building a posterior, and producing a forecast—are instead a function of the most recent data and
are performed each time a new observation is made. For flu, using wILI provided by CDC, this
is a process occurring each week.

The first of the on-line tasks is to estimate recent wILI. This estimate is necessary for a
couple of reasons, the foremost among which is the 1–2 week lag between wILI data collection
and reporting. Because of this lag, there could potentially be no official CDC estimate of wILI for
the past several weeks. A further complication is that initial wILI reports are subject to change
because only a subset of providers have reported to CDC the number of ILI cases they have
observed. As more weeks pass, more reports are collected, and the value of wILI reported by
CDC begins to stabilize. For this reason, the most recent 2–3 wILI values are somewhat suspect
and are likely to be revised in coming weeks. Collectively, these issues were the primary impetus
for the nowcasting framework in Chapter 4 which I developed later.

As discussed extensively in Chapter 4, digital surveillance can be used as a proxy for wILI,
trading accuracy for timeliness. In our application of EB forecast the 2013–2014 flu season, we
made use of Google Flu Trends (GFT) to estimate the five most recent wILI values. On any given
forecasting week, CDC will have reported preliminary estimates of wILI for 3–4 of the past 5
weeks, and there will be no official estimates of wILI for the remaining most recent weeks. To
estimate what final wILI will be on these most recent five weeks, I regressed GFT onto wILI on
all prior weeks. I then used this model to compute an estimate of the most recent wILI values,
given the five most recent GFT values. The end result is a hybrid trajectory of n wILI values
such that the first section (n − 5 weeks) is preliminary wILI as reported by CDC and the last
section (5 weeks) is wILI as predicted by regression using GFT. For the 2014–2015 flu season,
we did not incorporate GFT data.

The next on-line task is to build a posterior distribution of trajectories. This is achieved
by sampling from the previously constructed prior and weighting samples by similarity to the
fragment of the trajectory available for the current season. There are a number of metrics that
can be used to define similarity in this context corresponding to associated assumptions about the
distribution of the noise. Here we use the multivariate normal log likelihood with Σ = I. Given,
on week index wk ∈ {1,2, · · · ,52}, a sample from the prior before injecting noise, p ∈ R52, and
the estimated wILI trajectory of the current season, s ∈ Rwk, the similarity-based weight can be
written as:

weight−1 ∝ (p1..wk − s)TΣ−1(p1..wk − s),

weight ∝

 wk∑
i=1

(pi − si)2

−1

.

Once a sample from the prior is assigned a weight, noise is injected as previously described.
The noise is injected after computing similarity for the simple reason that dissimilar samples
could, by chance, become superficially more similar with added noise.

The posterior distribution of weighted trajectories is built iteratively by repeatedly sampling
and weighting trajectories from the prior. The application of Bayes’ theorem in this step (defin-
ing a posterior in terms of a prior and a likelihood) is the source of Bayes in the EB moniker.
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The required number of samples is not well-defined, and in practice we sample until target dis-
tributions converge. This generally requires on the order of 105 iterations—about one minute of
computation. Each of the prior transformations takes constant time, and the number of transfor-
mations computed is linear in the number of samples; similarly, each likelihood computation is
linear in the number of observed weeks, and the number of likelihood computations is linear in
the number of samples.

The final task is to output a point prediction and a forecast for each target. In the general case,
we define the point prediction to be the weighted median of the target value measured on each
posterior sample, corresponding to minimizing the expected absolute error of the prediction.
We define the forecast as the smoothed distribution of weighted target values measured on all
posterior samples. Reporting a distribution is a non-trivial task, and often a histogram is reported
as a proxy. This has been the case, for example, in all flu contests to date. In the 2014–2015
flu contest, bins for timing targets were defined in one week intervals over the span of the flu
season (with an additional bin representing no epidemic), and bins for wILI targets were defined
in intervals of 1 wILI from 0–10 (with an additional bin representing wILI above 10). The details
of the contest, definitions of the various targets, and analysis of EB forecasting accuracy are all
discussed in the following sections.

5.3.2 A human judgment approach

It is difficult to say who first articulated idea of soliciting epidemiological predic-
tions from humans, but Ryan Tibshirani and Roni Rosenfeld both suggested use of
pencil-and-paper surveys. Drawing inspiration from this idea, I conceived, designed,
and implemented—and continue to run—the website and assimilation methodology
known as “Epicast”. The Epicast framework was one of the two winning entries in
CDC’s 2014–2015 flu forecasting contest [88], and it is currently one of our entries
for CDC’s 2015–2016 flu forecasting contest. The Epicast framework, with mini-
mal modification, was also an entry in DARPA’s 2014–2015 chikungunya prediction
challenge.

Given the partially observed wILI trajectory of the current season, would a person be able to
reasonably predict wILI through the remainder of the season? If many people were to make such
predictions, would the aggregate forecast be accurate? How would such a forecast compare to
forecasts produced by data-driven methods like Pinned Spline and Empirical Bayes? These ques-
tions inspired me to create Epicast, a website for collecting manual human predictions together
with a methodology for producing an aggregate forecast using these predictions.

The Epicast website is designed to collect epidemiological predictions from a large set of
volunteers. In the interest of collecting reasonable predictions from an informed crowd, Epicast
includes many informational resources. Some of these are links to external resources: the CDC
flu portal, the Wikipedia article on Influenza, data from ILINet, and a list of research articles on
the topics of epidemiological forecasting. Another resource is an embedded Google News box on
the user’s home page which shows up to date popular media articles on the topic of “flu”. Finally,
the wILI trajectory of all past seasons is shown on the actual prediction interface (Figure 5.4).

Submitting personal predictions through the Epicast interface is intended to be easy, fast, and
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Figure 5.4: A screenshot of the Epicast user interface. On any given week, the past
wILI trajectory of the current season is displayed (solid black). A user’s prediction is
a continuation of this trajectory over weeks in the future (dashed black). wILI trajec-
tories of past seasons show the typical course of influenza epidemics (colored lines).

fun. Participants need only to click and drag to indicate what they think the wILI trajectory will
look like on future weeks. Once a prediction has been made, the press of a single button will save
the prediction and take the user to the prediction screen for the next region. Once predictions
for all HHS regions and for the US as a whole (“national”) have been collected, participants are
taken back to their home page where they are told that they did a great job, thanked for their
participation, and encouraged to share Epicast via email or social media. Each Friday, when
CDC publishes new wILI values, we score user predictions and populate two leaderboards—the
most accurate users, overall and on the last week—to encourage friendly competition and to
motivate further participation.

The input that I collect from participating users is a set of wILI trajectories: a set of predicted
wILI values on future weeks, separately for each region. The goal of the Epicast methodology
is to aggregate these predictions to produce a probabilistic forecast. The way this is done is
very similar to the way forecasts are generated by the Empirical Bayes method. The Epicast
point prediction for any target is defined as the median of the target values measured on user
predictions. The Epicast forecast for any target is a Student’s t distribution with location equal to
the median value (the point prediction), scale equal to the sample standard deviation of values,
and degrees of freedom equal to the number of participants.

As with EB, the output of the Epicast system is twofold: a point prediction and a forecast over
each target. Because the output of these systems is the same, it is possible to directly compare
the forecasting accuracy of the two methods.
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5.4 Results in forecasting the 2014–2015 flu season

5.4.1 Objectives, Targets, and Accuracy
As discussed in Chapter 2, CDC is currently hosting the third annual flu contest for forecasting
wILI in the US. Our group has participated in all of these contests, and for the 2014–2015 season
we submitted forecasts generated by the three previously mentioned forecasting methods: Pinned
Spline (SP), Empirical Bayes (EB), and Epicast (EC). For the purposes of the contest, CDC
required both a point prediction and a probabilistic forecast for a set of seven targets, separately
for each of the ten HHS regions and for the US as a whole (eleven total regions). These targets
were:
• Onset Week.

The MMWR week on which wILI first reaches the epidemic threshold. This threshold,
called a “baseline”, is defined separately for each US region and is redefined each flu
season. Technically, Onset Week is the first of three consecutive weeks on which wILI,
rounded to one decimal place, is at or above the baseline in a given region.

• Peak Week.
The MMWR week on which wILI reaches its maximum value.

• Peak Height.
The value of maximum value of wILI. In other words, the height of the wILI trajectory on
the Peak Week.

• Lookaheads (4).
The next four wILI values. In other words, the height of the wILI trajectory at 1, 2, 3, and
4 weeks following the most recently reported wILI. Because of the lag in wILI reporting,
the 1 Week Lookahead is technically a nowcast. I take advantage of this in Chapter 4.

Now that the contest is over, it has been revealed that Epicast was—at least by the metrics
used by CDC—the winning system, not just among these three systems but among all seven
competing entries in the flu contest. More precisely, Epicast was ranked highest in the four short-
term targets, second-highest in the three season-wide targets, and achieved the highest combined
score of any system. In what follows, I assess by a variety of metrics the forecasting performance
of our three systems and show where each system excels and where each lags.

Each week during the 2014–2015 flu season I asked Epicast participants to predict wILI for
each remaining week of the season. Each individually submitted prediction was a trajectory
of varying length (depending on the week of submission) of wILI values, and I asked users to
provide such predictions for each of the eleven total regions (treating US national as an addi-
tional region). From these submissions I produced an aggregate forecast over all seven targets
as described above. In parallel, we ran the SP and EB systems on the same weeks to produce
equivalent forecasts. Each Friday (usually), CDC published wILI for the preceding week, and
on the following Monday we submitted forecasts separately for each of our three systems.

As previously discussed, I assess the quality of predictions in terms of mean absolute error
(MAE). I assess the quality of forecasts in terms of (negated) mean log likelihood (MLL). To
avoid unfairly penalizing the (at the time) surprising effects of backfill, I use not only the prob-
ability in the bin containing the true outcome, but also the probability assigned to one or two
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adjacent bins. Although this definition of log score is somewhat unorthodox, it is at least consis-
tent with the scoring rule adopted by CDC for the 2015–2016 flu contest. In the case of Onset
Week and Peak Week, I consider the log score of the range of the actual Peak Week plus or minus
one week (for example, if the Peak Week was 5, I compute the log likelihood of the probability
assigned to a peak being on week 4, 5, or 6). Suppose that PkWkobs

r denotes the observed value
of Peak Week in region r and that P(· · · ) represents the probability assigned by the forecaster to
a given outcome. Then the score across all regions can be written as:

score = − 1

11

11∑
r=1

log P(PkWkr ∈ [PkWkobs
r − 1,PkWkobs

r + 1]).

For the five wILI targets, I only have available a set of probability bins each of width 1
wILI, as this is what was required by CDC’s flu contest. To determine which bins to include
in the likelihood calculation, I select a) the wILI bin containing the actual value and b) the
adjacent wILI bin nearest to the actual value. For example, the actual Peak Height in the U.S.
National region was 6.002, and I select the two bins which together give the probability assigned
to the event that actual Peak Height falls between 5 and 7. Suppose a forecast was made that
P(5 ≤ wILI < 6) = 0.215 and P(6 ≤ wILI < 7) = 0.412; the log score assigned to this forecast
is − log(0.215 + 0.412) = 0.467. For Peak Height (and similarly for the Lookahead targets)
across all regions:

score = − 1

11

11∑
r=1

log P(PkHtr ∈ [round(PkHtobs
r )− 1, round(PkHtobs

r ) + 1]).

While I strive to give equal treatment to each of the seven forecasting targets, Onset Week
is somewhat problematic, and I handle this target separately for a couple of reasons. First, the
epidemic onset occurred shortly after the start of the flu contest, and therefore the number of
weeks on which we made predictions before the epidemic onset was much smaller than the
number of weeks we made predictions ahead of, say, the epidemic peak. Second, the target of
Onset Week is highly sensitive to ILINet backfill (recall Chapter 4 and Figure 4.1).

To further illustrate how backfill influences Onset Week, consider how changes to reported
values of wILI cause the ground truth value of each target to change. The five wILI targets are
somewhat robust to small changes in reported values; a forecast of 2.0 wILI is not so far off from
a forecast of 2.1 wILI. By contrast, the target of Onset Week (and perhaps to a smaller extent,
Peak Week) is fragile; small updates to published wILI values can have a large impact on the
target week. For example, consider the scenario in HHS Region 1 (baseline = 1.2). On 2015w16
(20 weeks after actual onset), onset week measured on the most up to date data was 2014w48.
One week later, an adjustment due to backfill caused wILI on 2014w49 to fall below the baseline,
resulting in a new onset week of 2014w50. This small and delayed wILI revision, from 1.27 to
1.10, caused a two week shift in onset week (Figure 5.5). A similar situation happened in HHS
Region 2. I return to the analysis of Onset Week after first comparing accuracy on each of the
other forecasting targets.
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Figure 5.5: Backfill in HHS region 1 causes a two week shift in Onset Week. A
large change (2 weeks) in onset week was caused by a small change (-0.17) in wILI.

5.4.2 Epicast Participation and Standalone Accuracy
In total, Epicast received 5,487 trajectories from a set of 48 volunteer participants during the
32 week period beginning on epiweek 2014w41 and ending on 2015w19. Participants varied in
skill, from (self-identified) experts in public health, epidemiology, and/or statistics, to laypersons.
Participation varied over time with an average of 16.1 participants per week (Figure 5.6). In the
current analysis I did not handle expert and non-expert predictions differently, but I compare
the performance of the two groups in a following section—the experts on average made slightly
more accurate predictions.
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Figure 5.6: Overview of 2014–2015 Epicast participation. Top: total number of
participants per week (avg: 16.1). Bottom: weekly submissions broken down by
individual participants. Each participant is assigned a unique color which is used in
subsequent figures.

To build an intuition for the standalone accuracy of the Epicast system, I test whether pre-
dictions fall within some range of the truth for each target. For the four short-term Lookahead
targets, I count the fraction of the time that the predicted value falls within each range, grouped
over all regions and weeks (Figure 5.7). The prediction is within 10% of the actual value just
under half the time when predicting one week into the future; this falls to roughly one third of
the time when predicting 4 weeks into the future. The trend is similar, though not as abrupt, at
other accuracy thresholds. Accuracy within 50% is achieved near or above 95% of the time, even
predicting up to 4 weeks ahead.
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Figure 5.7: Overall accuracy of Epicast for short-term targets. The percent of re-
gions and submission weeks (n = 352) where the Epicast point prediction was accurate
within some range of the actual value is plotted as a function of short-term target.

To illustrate the varying difficulty of predicting each target throughout the season, I next con-
sider a similar measure of accuracy as a function of lead time—the number of weeks preceding
the Peak Week within each region (Figure 5.8). For 2, 3, and 4 weeks ahead, the lead time
with lowest accuracy is 2, 3, and 4 weeks before the Peak Week, respectively, which suggests
that there is a distinct challenge in forecasting the Peak Height. All short-term targets appear to
be more accurate early and late in the season and less accurate around the Peak Week; this is
to be expected, because there is significantly more volatility around the peak of the epidemic.
The situation is quite different for the season-wide targets in which accuracy approaches 100%
within two weeks after the peak. Accuracy of Peak Height prediction is initially low, but rapidly
increases starting around 5 weeks before the peak. I defined accuracy in Peak Week slightly dif-
ferently; it is the fraction of the regions in which the predicted Peak Week was within N weeks
of the actual Peak Week (N ∈ {1, 2, 3, 4, 5}). The situation for Peak Week closely matches that
for Peak Height, and again I find that accuracy rapidly increases starting around 5 weeks before
the peak and reaches its maximum two weeks after the peak.
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Figure 5.8: Accuracy of Epicast by lead time for all targets. Accuracy, as the num-
ber of regions where the Epicast point prediction was accurate within some range of
the actual value, is plotted as a function of lead time. For timing targets, the range is
the actual value plus or minus 1, 2, 3, 4, or 5 weeks; for wILI targets, the range is 10%,
20%, 30%, 40%, or 50% above and below the actual value. Subplots show accuracy
in (A) Peak Week, (B) Peak Height, and (C, D, E, and F) wILI at 1, 2, 3, and 4 Week
Lookaheads, respectively.

To more quantitatively evaluate the Epicast method, I calculate separately for each target
Epicast’s MAE across regions as a function of lead time (Figure 5.9). In agreement with previous
results, MAE in season-wide targets generally decreases with lead time and is highest in short-
term targets when predicting the peak. Additionally, MAE is elevated on the Peak Week (lead
time = 0) across all short-term targets, indicating a relative increase in uncertainty immediately
after the true peak (which is not known at the time to be so).
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Figure 5.9: Mean absolute error of Epicast by lead time for all targets. Mean
absolute error across regions (n = 11) is plotted as a function of lead time. Subplots
show MAE in (A) Peak Week, (B) Peak Height, and (C, D, E, and F) wILI at 1, 2, 3,
and 4 Week Lookaheads, respectively.

5.4.3 Comparison of Accuracy Between Forecasting Methods

To contextualize the accuracy of the Epicast method, I compare Epicast accuracy with the ac-
curacy of individual participants and against the accuracy of two statistical forecasting methods.
The statistical systems are the previously mentioned Pinned Spline (SP) and Empirical Bayes
(EB) methods. The main challenge in presenting these results is that the space in which com-
parisons can be made consists of several orthogonal dimensions: regions (national + 10 HHS
regions), targets (Peak Week, Peak wILI, and wILI 1–4 weeks ahead), submission weeks (de-
pending on target, up to 32), and metrics (MAE and log score).

Concisely representing system performance requires the non-trivial task of reducing this di-
mensionality, otherwise it would require thousands of separate figures of merit. Several con-
founding issues impede aggregation along any one axis: forecasting difficulty varies over time as
the season progresses, the various regions may peak at different times in the season, long-term
targets are inherently more difficult to predict than short-term targets, and targets are measured
in different units.

To work around these complications in the case of point predictions, I rank systems and
participants in terms of absolute error and perform subsequent analysis on the relative ranking
assigned to each forecaster. More specifically, I consider the pairwise ranking in absolute error
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of Epicast versus individual participants or statistical methods. For each lead time, region, and
target, I ask whether Epicast or the competitor had a smaller absolute error, and I measure the
fraction of instances where Epicast had the smaller error—a “Win Rate”.

To assess the statistical significance of each result, I use a Sign test with the null hypothesis
that the pair of forecasters is equally likely to win (having smaller error). It should be noted
that this test assumes that all observations are independent, but results across adjacent weeks,
for example, are likely to be correlated to some extent. Overall, considering all targets, Epicast
has lower error than all individual participants and both statistical methods (Figure 5.10). A
similar result holds when only considering the four short-term targets. In the two season-wide
targets, Epicast does well overall, but a small set of participants are more accurate than Epicast
(one significantly so). In all cases, Epicast outperforms—often significantly—the two statistical
systems.

Figure 5.10: Epicast Win Rate against individual human predictions and compet-
ing systems. All plots show, for each predictor (users participating on at least half
of the weeks, and two statistical systems), Win Rate: the fraction of instances where
Epicast had lower absolute error than the competitor, across all regions and lead times
(n = 231 per target). Statistical significance is determined by Sign test; *: p < 10−2;
**: p < 10−5. Subplots show Win Rate considering (A) all targets, (B) the four short-
term targets, and (C) the two season-wide targets.

Next, I compare forecasts in terms of log scores, however my analysis in this context is
limited to only Epicast and Empirical Bayes as these are the only two systems for which we
have reliable forecasts in addition to simpler point predictions. (The Pinned Spline system also
produced forecasts, but these were often quite unreasonable.) I compute the average of these log
scores for Epicast and EB for each target and for each value of lead time (Figure 5.11). To further
contextualize the log score of each system, I show also the log score of a hypothetical system
in which uniform probability is assigned to all plausible outcomes. For Peak Week, I define
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this as a uniform distribution over weeks 2014w46 through 2015w12 (p = 1
20

per week), and
for the wILI targets I define this as a uniform distribution over wILI from 0 to 12 in increments
of 1 (p = 1

12
per bin). This uniform system provides a lower bound on the performance of a

reasonable forecaster. Although Epicast has the smallest average log score for most targets, EB
more consistently scores within the bound of the uniform system. EB particularly outperforms
Epicast on season-wide targets during the weeks preceding the peak, but the trend reverses after
the peak as Epicast more rapidly converges on the true value. On the short-term targets, Epicast
generally scores better than EB, except when predicting wILI of the Peak Week.

Figure 5.11: Comparison of log scores for Epicast and Empirical Bayes. Log
scores, averaged across regions, of Epicast, Empirical Bayes, and the uniform forecast
are plotted as a function of lead time. The average log score across time by system is
shown to the right of each plot. Subplots show log scores by (A) Peak Week, (B) Peak
Height, and (C, D, E, and F) wILI at 1, 2, 3, and 4 Week Lookaheads, respectively.

Finally, I summarize the performance of several forecasting strategies in terms of MAE in
Table 5.1. I compare MAE separately for each forecasting target for each of Epicast, Pinned
Spline, Empirical Bayes, and a simple “Baseline” approach.

The baseline prediction for any given target is computed as follows. Start with the wILI
trajectory of each past season, starting in 2003 and excluding the 2009 pandemic. Each of these
ten curves starts on week 30 of one year and ends on week 29 of the following year, truncated
to 52 weeks on years with 53 weeks. At any point during the flu season, wILI has only been
observed on some of the weeks. The baseline replaces wILI on all ten curves with the wILI
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values that have been observered so far in the current season. This results in a set of ten composite
curves where the “left” side is wILI observed in the current season and the “right” side is wILI
reported in one of the past flu seasons. Finally, the target value of interest (say, Peak Week) is
measured on each of the ten composite curves. The Baseline prediction is simply the median of
the ten target values.

Despite the relative simplicity of the Baseline approach, on rare occasion it outperforms our
more sophisticated systems. Overall, however, the baseline is generally inferior to the other
approaches. Epicast shows particularly good performance, being ranked #1 in five of the seven
targets and #2 in the other two targets. It appears that—at least for MAE in the 2014–2015 flu
season—the general ordering of these systems from best to worst is: Epicast, Pinned Spline,
Empirical Bayes, and Baseline.

Target Epicast Spline E. Bayes Baseline
+1 Week wILI 0.3301 0.3802 0.5893 0.7954

+2 Week wILI 0.4391 0.5392 0.7003 0.8134

+3 Week wILI 0.4981 0.6502 0.7943 0.8334

+4 Week wILI 0.5571 0.7402 0.8794 0.8563

Peak wILI 0.6822 0.9924 0.7103 0.6411

Peak Week 1.2842 1.2441 1.6054 1.4913

Onset Week 0.5851 0.7222 0.9893 0.9914

Table 5.1: Mean absolute error by forecasting target and system. For each of the seven
forecasting targets (rows), the MAE of that target over all regions and submission weeks is shown
for each system (columns). The rank of each system is indicated by a superscript number.

5.4.4 Results in forecasting Onset Week
Here I repeat the standalone and comparative analyses of Epicast performance in forecasting
Onset Week (Figure 5.12). Due to an early epidemic onset in most regions, the analysis by
lead time is limited to a window of six weeks. As before, I find that when considering pairwise
ranking in absolute error, no individual user or system has a statistically significant Win Rate over
Epicast. Two users do win over half the time, but the result does not reach the p < 10−2 threshold
of significance. On the other hand, Epicast beats the two statical systems—one significantly.
As with the other season-wide targets, I find that MAE in Onset Week falls during the weeks
preceding the onset and then levels off. Unlike the other targets, error in onset week, by all
measures, never reaches zero; predicted onset is always off by more than one week in at least
one region, as is particularly evident in the plot of average log score. The reason for this apparent
shortcoming is, as discussed throughout, due to backfill.
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Figure 5.12: Accuracy in forecasting Onset Week. Epicast performance on an ad-
ditional season-wide target, the week of epidemic onset. (A) As in Figure 5.8, the
number of regions in which Epicast’s prediction falls within a given range of the actual
onset week, plotted as a function of lead time relative to epidemic onset. (B) As in Fig-
ure 5.9, MAE (across regions) in onset is plotted as a function of lead time relative to
epidemic onset. (C) As in Figure 5.10, pairwise Win Rate is shown for Epicast against
individual users and statistical systems. (D) As in Figure 5.11, average log score is
shown for Epicast (EC), Empirical Bayes (EB), and the Uniform System (UN) as a
function of lead time relative to epidemic onset.

5.5 Adaptive extensions to the Epicast framework

The surprising accuracy of the Epicast method raised several interesting questions. Does past
experience or expertise influence prediction accuracy? Are some participants inherently better at
predicting flu than others? Would it be better to trust the predictions of some participants more
than predictions of others? I attempt to answer these questions in the following retrospective
analysis.
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5.5.1 The relative accuracy of expert and non-expert predictions
An interesting question that arises in the context of “Wisdom of Crowds” forecasting is whether
“experts” (by some definition) make better forecasts than non-experts. Within the online Epicast
user interface, I gave users the option to self-classify as having background or expertise in up
to five areas: epidemiology, statistics and/or machine learning, virology, public health, and in-
fluenza. Of the 48 active users, 25 claimed expertise in at least one area, and the other 23 did not
claim expertise in any area.

To assess the relative performance of the “experts” versus the “non-experts”, I built forecasts
using only predictions made from each group. I show MAE (Figure 5.13) and MLL (Figure 5.14)
of each group as a function of lead time for each target. Perhaps unsurprisingly, the expert group
generally has MAE and MLL less than or equal to that of the unmodified Epicast forecast and the
Epicast based only on non-expert inputs. The most striking difference between the two groups
appears when forecasting Peak Week, especially at a long lead time. On the other hand, accuracy
between the two groups is essentially indistinguishable for the 1- and 2- Week Lookahead targets.
The difference when predicting Peak Height and wILI at 3- and 4- Week Lookaheads is small,
but noticeable.

Figure 5.13: Expert versus Non-expert MAE. MAE is plotted for unmodified (all
users) Epicast (EC), expert-based Epicast (EC+), and non-expert-based Epicast (EC-)
as a function of lead time relative to the Peak Week. As in Figure 5.9, panels A, B, C,
D, E, and F show MAE separately for each target.
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Figure 5.14: Expert versus Non-expert MLL. Mean log-likelihood is plotted for
unmodified (all users) Epicast (EC), expert-based Epicast (EC+), and non-expert-based
Epicast (EC-) as a function of lead time relative to the Peak Week. As in Figure 5.11,
panels A, B, C, D, E, and F show log score separately for each target.

To determine whether these observations are statistically significant, I use a Sign test as
before, this time separately for each target (Figure 5.15). Neither expert nor non-expert versions
of Epicast have a significantly higher Win Rate than the Epicast built from all users. On other
hand, none of the Win Rates reaches the p < 10−2 threshold of significance. It is, however,
clear that the expert group loses to unmodified Epicast less frequently than the non-expert group.
This raises the question of whether some subset of—or a special weighting of—users could
significantly improve Epicast performance. I consider this question in the next section.
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Figure 5.15: Expert versus Non-expert Win Rate. Win Rate of the unmodified (all
users) Epicast system is plotted against expert-based Epicast (EC+) and non-expert-
based Epicast (EC-). Panels A, B, C, D, E, and F show Win Rate separately for each
target.

5.5.2 A weighting scheme based on expertise and past performance

Given that some users consistently outperform other users, is it possible to apply an adaptive
weighting scheme to user predictions so that the overall accuracy of the Epicast is significantly
improved? The primary obstacle to implementing such a scheme in real-time is that, due to
backfill, it is not possible to know which users are outperforming their peers. Still, it is possible to
estimate relative user performance using preliminary data and boost the weight of (hypothesized)
high-accuracy users from week to week. I retrospectively attempt such a scheme below. Because
I am limited to one season of data, I am unable to exhaustively test adaptive weighting schemes;
however, I think the one described here, while ad-hoc, is a reasonable approach.

The original Epicast can be thought of as having a static weighting system wherein each user
is given a weight of 1. Now I weight users based on two criteria: those who self-identify as
experts, and those who had the lowest absolute error 2 weeks ago for a 3-week-ahead predic-
tion of wILI (performance on the 3 Week Lookahead wILI target, after having seen preliminary
“truth” values for two weeks). I select this particular target and timing for two reasons. First,
it is difficult to differentiate user performance on very-short-term targets; predictions are very
clustered at one week ahead and begin to spread out as the length of the prediction increases.
At 3 weeks ahead it becomes reasonable straightforward to differentiate user performance. So
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then, why use the 3 Week Lookahead target and not the 4 Week Lookahead target? This leads
to the second reason: I need data that is as finalized as possible to determine who is performing
well. Because of the previously discussed backfill issue, initial wILI estimates are subject to
revision. Reliability increases (backfill adjustments decrease) over time. The initial report is too
unreliable to determine who is doing well, so I wait one additional week for the wILI value to
settle a little bit closer to its final value. Finally, there is the additional constraint that I want to
know as soon as possible who is performing the best—I want to know as early as possible in
the season who the accurate users are, and I want to be able to quickly adapt to changes in their
performance. This method will allows for the ranking of users with a total lag of 5 weeks. To
be more concrete, the proposed weighting scheme is this: wu = 1 + eu + ru, where w is the
weight given to a prediction, e is 1 for (self-identified) experts (0 otherwise), and r is 1 for the
top (arbitrarily) 5 users in terms of MAE on 3 Week Lookahead predictions (0 otherwise)—for
each user u.

To illustrate the adaptive nature of the weighting scheme proposed above, I show a moving
average (over 5 weeks) of user weight as a function of submission week for the 5 users with the
highest number of submissions (Figure 5.16). As expected, some users are consistently given
more weight than other users, and these weights change in response to accuracy of past pre-
dictions. To determine whether the Epicast built with these weights is better than the original
Epicast, I show MAE (Figure 5.17) for each target as before. Unsurprisingly, the weighted Epi-
cast outperforms the original, unweighted Epicast. However, it is difficult to say if there is any
real advantage to using this particular weighting scheme, especially when considering the short-
term targets. With the exception of the 4 Week Lookahead target, the weighted Epicast achieves
a slightly higher Win Rate than the unweighted Epicast, but none of the Win Rates reach signif-
icance at the p < 10−2 level. Still, these results suggest that there may be value in considering
both user skill (self-classification as having expertise) and past performance (accuracy on previ-
ous predictions) when aggregating user predictions. I suspect that the advantage of a weighted
Epicast would be much more meaningful with a larger, and more diverse, set of participants.
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Figure 5.16: User Weight over Time. The five week moving average of user weight
is shown for the 5 most active users.

Figure 5.17: MAE of Weighted Epicast. MAE is plotted for unweighted Epicast (EC)
and weighted Epicast (EC*) as a function of lead time relative to the Peak Week. As
in Figure 5.9, panels A, B, C, D, E, and F show MAE separately for each target.
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5.6 Epidemiological forecasting of other diseases
Although the epidemiological forecasting systems described in this chapter were designed to
forecast influenza in the US, the methods are readily generalizable to other diseases and locations.
To demonstrate this, I show the results of two additional forecasting challenges in which our
group participated: the OSTP dengue challenge and the DARPA chikungunya challenge. For
the former, we used an approach based on a hybrid methodology of Empirical Bayes and Pinned
Spline; for the latter, I used a modified version of Epicast to collect predictions from a selected set
of experts in fields relating to epidemiology and vector-borne diseases. Both of these challenges
focused on predicting disease outbreaks in tropical America.

5.6.1 OSTP Dengue Challenge
Our forecasting system for the dengue challenge was a mixture of two systems:
Empirical Bayes and Pinned Spline. Logan Brooks managed the Empirical Bayes
system and compiled and submitted forecasts, Ryan Tibshirani provided the origi-
nal Pinned Spline implementation, and David Farrow (myself) adapted the Pinned
Spline framework to handle external covariates for the dengue challenge.

The dengue challenge, unlike the influenza and chikungunya challenges, was retrospective;
we were given training data up until 2009, and we were asked to retrospectively forecast, or
“backcast”, dengue incidence from 2009–2013. As with the flu contest, forecasts were required
for multiple locations. These locations were Iquitos, Peru and San Juan, Puerto Rico. There were
three targets for which we were asked to provide both point predictions and forecasts:
• Peak Week.

The week of highest dengue incidence.
• Peak Incidence.

The highest dengue incidence. In other words, the height of the dengue case trajectory on
the Peak Week.

• Total Cases.
The total number of cases (both confirmed and suspected) throughout the forecasting pe-
riod.

The essence of our methodology was as previously described, with just a few exceptions.
First, we combined the outputs of the two statistical systems. Second, we included covariates of
temperature and precipitation in the Pinned Spline method.

The combining process took three inputs: forecasts generated by the Empirical Bayes system,
forecasts generated by the Pinned Spline system, and an empirical prior over target values. This
empirical prior is a type of baseline forecaster that does not rely on any observations within the
current season; instead, it simply forecasts, for any given target, the empirical distribution of the
target values which have been observed in past years. The point prediction of the empirical prior,
like many of our forecasting systems, is just the median of the observed target values. Leave-one-
out cross-validation was used to find the optimal mixture weights of the three systems. These
weights (summing to 0.99) were computed separately for each evaluation metric (MAE and log-
likelihood) and were recomputed for each forecasting week. The remaining 0.01 weight was
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assigned to a uniform distribution over all outcomes so as to prevent assigning a probability of 0
to any event.

The climatic data consisted of daily temperature and precipitation (and many other) values for
both locations. Before using the precipitation data as a covariate, I first applied a smoothing filter
to model cumulative precipitation as a proxy for the amount of standing water. This operation,
which produces new observations z from original observations y with tuning parameter α(=0.25),
can be expressed as:

zt = yt + αzt−1

I did this because a) the raw precipitation data was not strongly correlated with dengue incidence
and b) dengue is spread by mosquitoes, which require standing water for breeding. The two
covariates (temperature and standing water) were aggregated at a weekly timescale to match the
incidence data, and they were used as covariates in the spline regression method. This devi-
ates from the Pinned Spline system described in Appendix A in that the original Spline method
only used a set of spline basis functions as covariates, but the Spline method for this challenge
included these two additional climatic covariates.

After evaluation of all submissions, the challenge organizers shared with us our log scores
(Figure 5.18). Our hybrid system performed well across all targets and locations, particularly
in forecasting total incidence in San Juan. A more detailed comparison of forecasting accuracy
across participating teams is expected in a forthcoming publication.
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Figure 5.18: Results of the dengue challenge in terms of log likelihood. Weekly log
likelihood, averaged over weeks of the 2009–2013 forecasting period, is shown for our
team. Results are shown separately for each forecasting target and location.

5.6.2 DARPA Chikungunya Challenge

Our forecasting system for the chikungunya challenge consisted solely of Epicast,
which was implemented and maintained by David Farrow (myself). Roni Rosenfeld
and Don Burke were both instrumental in soliciting the help of the participants with
expertise in relevant fields.

The aim of the chikungunya challenge was unlike that of the influenza and dengue challenges
in a number of ways. One way in which they differed has to do with the type of event being
predicted. Whereas influenza and dengue have regular—and therefore somewhat predictable—
outbreaks each year in their respective locations, chikungunya in 2014 had just been introduced
to the Americas. As a result, this event was an invasion, not an epidemic in the more familiar
sense of annual flu epidemics. For this reason, there is no historical case data available in the
locations of interest, and the most similar datasets are for the invasion of other diseases in other
locations. This alone is a significant obstacle for the application of statistical, data-driven fore-
casting methods. The other big difference in the chikungunya challenge is that no forecasts were
required—only point predictions.
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For the above reasons, we decided to apply our Epicast methodology to predict the chikun-
gunya invasion, relying on expert opinion to build our aggregate prediction. We identified and
invited around twenty experts in vector-borne viruses to participate in our Epicast methodology.
Of these, twelve accepted the invitation and participated on at least one occasion during the
challenge.

Once each month, from August, 2014 through January, 2015, I asked the expert participants
to predict the cumulative weekly chikungunya case count in each of the 55 Pan American Health
Organization (PAHO) locations through the end of February 2015; and throughout the challenge
I gathered a total of 2,530 trajectories Figure 5.19.

A serious impediment to producing accurate predictions in the long term is the fact that
errors in cumulative chikungunya forecasts accumulated over weeks, whereas errors in (non-
cumulative) influenza and dengue forecasts were separated out across weeks. While it would
have been trivial to convert a cumulative trajectory into a non-cumulative trajectory, the pub-
lished counts which were defined to be ground truth are only available sporadically over time,
preventing me from converting the true cumulative trajectory into a non-cumulative trajectory.

The increased difficulty of the task is reflected by a reduction in accuracy. At best (one week
ahead), less than one in three predictions were within 10% of the actual value; and at worst
(ten weeks ahead), over half of the predictions were off target by more than 50%. Even in such
conditions, when comparing pair-wise absolute error between Epicast and each user, Epicast
more frequently predicts closer to the true value than any individual user.

Epicast was not selected as one of the six chikungunya challenge winners [171], however we
are told that it ranked in the top quartile (Q1) of submissions. In a more detailed breakdown of
Epicast performance provided through communication with DARPA, we learned that the Epi-
cast methodology was ranked Q1 in methodology, Q1 in predicting peak incidence, and Q1 on
predicting incidence at the fifth monthly submission. On the remaining months, Epicast ranked
Q3.
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Figure 5.19: Overview of Epicast chikungunya forecasts. (A) Similar to Figure 5.6,
participation is shown per month (top) and per expert (bottom). (B) As in Figure 5.7,
percent of predictions within some range of the target value as a function of the num-
ber of weeks in advance that the prediction was made (45 ≤ n ≤ 84). (C) As in
Figure 5.10, the fraction of instances where Epicast had lower absolute error than each
individual participant, across all countries and weeks (336 ≤ n ≤ 795; Sign test; *:
p < 10−2; **: p < 10−5).
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5.7 Final considerations

5.7.1 Pros, Cons, and Caveats of human judgment in forecasting

For years, both humans and machines have been employed to tackle difficult prediction prob-
lems. The biases involved and the relative advantage of data-driven approaches are at least well
documented [172, 173], if not well understood. I do not make the claim that human judgment is
intrinsically more valuable or more capable than machines when making epidemiological fore-
casts, but I do posit that there is value in understanding the strengths in each approach and suspect
that both can be combined to create a forecasting method superior to either approach alone. A
similar discussion has recently taken place in the related field of numerical weather prediction
[174].

There are several important limitations of the human judgment approach relative to purely
data-driven methods that should be made clear. First, these results are only representative of a
single flu season and a single chikungunya outbreak. This highlights one of the biggest shortcom-
ings of this approach—collecting predictions is a tedious and time-consuming process. Unlike
statistical methods which can be applied retrospectively to any outbreak, the approach here re-
quires a significant amount of work from a large number of participants. Because of this I am
unable to perform cross validation across seasons. Second, these results do not necessarily pro-
vide us with an improved understanding of epidemiological dynamics. In contrast, statistical
methods can aim to learn from past data in order to better describe and model the epidemic
process.

On the other hand, the human judgment approach does have unique advantages over purely
data-driven systems. Humans have the innate and powerful ability to assimilate, with little to no
effort, diverse data sources. An example of this is using news headlines, which we display within
the Epicast interface, to inform predictions. Another advantage of human judgment is the ability
to make reasonable predictions for events with little historical precedent, like the outbreak of a
new disease or a disease invasion in a new location.

The task of predicting trajectories is not necessarily trivial, and I asked each of the partici-
pants to provide many such trajectories over quite a long period of time. There has been much
work done to understand the ways in which crowd work can be optimized in terms of maximum
benefit to participants [175], and I made every effort to achieve this goal. To minimize the overall
amount of effort required and to streamline the process as much as possible I: allowed users to
use their previously entered forecasts as a starting point; accepted any number of regional flu
predictions (not requiring all eleven to be completed); reduced the entire process to one drag
and one click per region, and sent URLs tailored with a unique identifier via email each week
to bypass having to login. Additionally I tried to increase interest and participation by including
a leader board of both weekly and overall high scores. I also had the competing objective of
collecting the most informed forecasts from our users. To this end, I included a section of links
to educational resources, and I embedded within each user’s home page a Google news feed on
the topic of “flu”.

It was our hope that the number of participants would grow organically, for example through
word of mouth and social media. Instead, we found it difficult to recruit new participants and to
maintain participation throughout the flu season. The failure to achieve a true “crowd” is most
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likely due to the tedium of the task, and I have considered ways to both reduce this tedium and to
make the task more gratifying for participants. While I strove to design the user interface in a way
that minimizes the level of effort required to input predictions, there is always room for further
improvement. One option I considered, but did not implement because of the small number
of participants, is to reduce workload by asking participants to provide a prediction only for a
randomized subset of regions. Another option I considered, but did not completely implement
due to time constraints, was gamification. This was partially implemented in the form of leader
boards, but it would be difficult to provide a more immediate reward because of the inherent
delay between prediction and revelation of true outcomes.

5.7.2 The state of the art
Epicast is first and foremost a bona fide approach to epidemiological forecasting; however, it
also provides a valuable and intuitive baseline for assessing the state of the art. The focus of
the various epidemiological forecasting challenges has been to build computational, data-driven
forecasting methods, and the standards by which these systems have been judged are often ar-
bitrary. One example of this is the performance of the uniform system as used in Figure 5.11;
another example is the uniform prior used as a component in the dengue forecasting methodol-
ogy. We hope that our data-driven methods outperform these baselines, but aside from these and
other simple sanity checks, we are left without a sense of the overall value of our data-driven
forecasts.

In this context, Epicast can be seen as another, and much more interesting, baseline: the best
forecasts we would have at our disposal without the aid of computational methods. In this light,
we see what we have to gain by developing computational approaches to forecasting, and we
learn a more informative measure of the relative utility of such systems.

With this in mind, it is disappointing on some level that Epicast was the most accurate method
in the 2014–2015 flu contest short-term targets. On the other hand, statistical systems were
not so far off—some were slightly ahead in seasonal targets. I suspect that in short time some
computational systems will overtake Epicast entirely, and when this happens it will represent
significant progress in our understanding of, and in our ability to prepare for, disease outbreaks.
For now, it appears that human judgment has a relative advantage over data-driven methods, at
least in short-term forecasts.

5.7.3 A model of models
A natural evolution of systems such as those for epidemiological forecasting is the combination
of human and statistical (machine) methods [175, 176]. The first question in such a project
is whether human predictions should be given as input to statistical methods or whether the
output of the statistical methods should be shown to humans for more informed predictions. In
theory both directions are viable, and there are intuitive reasons for each. In support of the latter,
people are naturally inclined to trust forecasts made by humans (or to distrust forecasts made
by machines), a phenomenon known as algorithm aversion [173]. Supporting the former, on the
other hand, is the observation that in many settings and in a variety of tasks, objective machine
prediction is often superior to subjective human prediction [172, 177].
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I have taken steps to explore both directions using the nowcasting system described in Chap-
ter 4. In the current, ongoing iteration of Epicast (2015–2016 flu contest), I show a subset of
participants the nowcast; and the nowcast system takes as input the 1 Week Lookahead from
Epicast.

It has become apparent throughout the various forecasting challenges that mixtures of models
generally produce better results than any of their component models. The methodology we
applied in the dengue challenge is one such example, and the Empirical Bayes system for the
2015–2016 flu contest has evolved into a mixture of several methods. Combined approaches like
these appear to be the way of the future.
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Chapter 6

Conclusion

There is a single light of science, and to
brighten it anywhere is to brighten it
everywhere.

Isaac Asimov

6.1 Summary of contributions
Although modeling the epidemiological trends of influenza was relatively straightforward, mod-
eling the evolutionary trends of influenza was a challenge for quite some time. One of the earliest
models that was able to explain the more complete phylodynamic picture of influenza made use
of an untested and theoretical immune component: generalized immunity. While it is not known
with certainty that this mechanism exists in humans and is solely responsible for influenza’s
distinctive evolutionary dynamics, it at least appears plausible, based on a variety of empirical
evidence. In Chapter 3 the main question I asked is this: if generalized immunity does in fact ex-
ist, how can it be most plausibly characterized? To answer that question, I mapped the parameter
space of generalized immunity and compared simulated outcomes with those observed empir-
ically for influenza A/H3N2. In addition to providing independent confirmation that a model
with generalized immunity is capable of capturing influenza’s full range of dynamics, I found
that generalized immunity could plausibly be much weaker and longer lasting than previously
hypothesized.

Beyond providing a more thorough characterization of generalized immunity, I also con-
tribute in Chapter 3 a methodology for evaluating simulated outcomes with respect to some set
of reference outcomes. Determining whether, and to what extent, a model-generated trajec-
tory matches expected outcomes for influenza has been a challenge for as long as influenza has
been modeled, and a large number of individual metrics have been conceived and applied to the
task. Unfortunately though, no standard methodology has been suggested for such evaluation,
and outcomes from each model have generally been studied qualitatively with disjoint sets of
measurements and methods. More problematic though is a lack of statistical support for these
methods, in part because the measures employed are typically considered only in isolation. I
showed that many epidemiological and evolutionary measures can contribute simultaneously to
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our confidence in the plausibility of generated trajectories in comparison to a set of reference
values. I posit and test the hypothesis that a simulation is plausibly influenza-like, enabling the
assignment of likelihoods to individual trajectories and of plausibility to specific parameteriza-
tions. Looking forward, it is my hope that similarly quantitative approaches will be used to lend
statistical support to analyses of simulated dynamics of infectious diseases.

Having a reliable model of influenza’s phylodynamics implies that we have, at least on some
level, a working understanding of the processes that drive outbreaks. This is a critical require-
ment as we transition from explanations of the past to predictions of the future. Unfortunately
one of the largest obstacles in making this transition is a lack of situational awareness due to both
inherent and artificial shortcomings in traditional clinical surveillance. However, thanks to very
recent and increasing usage of the internet as a tool for learning and communication, there is now
available a tremendous amount of real-time digital surveillance data. In Chapter 4 I survey these
data streams and then combine them to produce an estimate of influenza activity in the US in real-
time. Data assimilation is nontrivial in this context; signals are noisy, heteroskedastic, variably
correlated, intermittently available, and exist at varying temporal and geographic resolutions.
Through application of a sensor fusion kernel derived from the Kalman filter, I use all available
data to produce an optimal estimate of influenza activity within all US states—something that,
to my knowledge, has never been previously attempted. By providing an accurate, timely, and
high-resolution consolidated surveillance stream, this work directly facilitates epidemiological
forecasting by addressing some of the most serious shortcomings of traditional surveillance.

Epidemiological forecasting is currently a very active area of research, and a large number
of forecasting frameworks have been developed for a variety of infectious diseases, thanks in no
small part to several contests and challenges sponsored by the US government. In Chapter 5 I
focus on three such systems, two of which I contributed to significantly. The first of these, the
Empirical Bayes system, takes a purely data-driven approach, producing probabilistic forecasts
based on empirical trajectories of past epidemics. This system was applied with much success
to forecasting both influenza and dengue, and its primary strength lies in a non-mechanistic
approach to modeling and forecasting epidemic trajectories. The second system, Epicast, is
based entirely on collective human judgment and represents a novel approach to epidemiological
forecasting. In addition to being one of the winning systems in the 2014–2015 flu contest, Epicast
was a strong competitor in forecasting chikungunya.

Many novel insights were gleaned through the development and application of Epicast and
the other forecasting systems in Chapter 5. There is evidence that prediction accuracy is relatively
consistent among human participants. Those who do well typically do well most rounds, whereas
those who do poorly typically do poorly most rounds. It was unclear beforehand whether this
would be the case—now we have strong evidence suggesting that it is. As previously discussed,
this knowledge can be used, for example, to weight individuals or systems based on past perfor-
mance to produce a better overall forecast. Until Epicast, the only way to evaluate data-driven
forecasts was to compare those forecasts with other data-driven forecasts and with very simple
and predefined baselines. Now we have something very valuable: a human baseline. To say that
a computational forecast outperforms a computational baseline is not always very meaningful;
but to show that a computational forecast outperforms the best forecasts that humans could oth-
erwise produce is quite meaningful. In this sense Epicast provides an intuitive measure of the
state of the art, and it appears that we are at a point in time when computational forecasting is
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just beginning to surpass that of human judgment.

6.2 Future directions
Although there is some biological evidence in support of a generalized immune response against
influenza, it has not yet been conclusively shown to exist in humans. A prominent alternative
hypothesis instead suggests that ephocal evolution, in the absence of generalized immunity, is
sufficient to constrain diversity. This epochal evolution was originally modeled using a neutral
network genotype-to-phenotype map [47] and was later generalized in a model considering only
the tempo of antigenic change [131]. Other hypotheses of influenza evolution posit an extremely
limited set of antigenic phenotypes [120, 178] or suggest that antigenic evolution is canalized
by human immunity [25]. As new explanations for influenza’s distinctive dynamics arise, an
important task will be to quantitatively and objectively validate and contrast results from each of
these models. My simulator of influenza transmission and evolution [111, 112] could be used as
a starting point for such comparisons.

Ultimately, however, these are questions concerning biological processes; and all of the an-
swers so far have been computational in nature. Biological experiments must be performed at
some point to provide a more consistent and empirically supported explanation for the role of
human immunity in shaping influenza’s phylodynamics. In Chapter 3 I describe much more pre-
cisely the biologically plausible ranges of strength and duration of generalized immunity in the
hope that future work toward its empirical validation can take advantage of these estimates to
significantly cull the experimental search space.

A sensor fusion approach to nowcasting in Chapter 4 has enabled the assimilation of a di-
verse set of digital surveillance sources that were previously considered either entirely in isola-
tion [69, 79, 82] or were used at the very coarse intersection of space and time for which they
were simultaneously available [85]. While this combined approach represents a significant im-
provement in our ability to estimate real-time disease incidence, its applications are intrinsically
limited by the availability of digital surveillance data. Disease nowcasting continues to lag out-
side of the US, especially in areas with limited internet access. Even in well-developed areas
with widespread internet access, it seems that using the English language is a requirement for
many signals, as these systems have only been trained on English datasets so far. While some
progress has been made towards expanding the geographic coverage of digital surveillance sig-
nals [81, 144], more work is needed to bring disease nowcasting in other locations up to par with
that in the US. Similarly, disease nowcasting is most advanced for influenza, and more work is
needed to bring nowcasting to other diseases.

Another interesting dimension to the nowcasting problem has yet to be explored. I attempt to
estimate the current gold standard of flu activity, wILI; but wILI is itself a convolution of noisy
constituent signals. wILI is inherently based on the clinical manifestation and human recogni-
tion of symptoms—it is syndromic surveillance. Unfortunately, a large number of pathogens can
cause flu-like symptoms. Two very prevalent examples of this are rhinoviruses and the human
respiratory syncytial virus. Additionally, flu is caused not by any single virus, but by different
types (including A and B) and subtypes (including A/H3N2 and A/H1N1). These variants are in-
distinguishable by the broad and subjective definition of ILI. There are, however, sources of viral
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identifying information; one example is the National Respiratory and Enteric Virus Surveillance
System (NREVSS), which reports antigenic classification and genetic makeup of viral samples
submitted within the US. With appropriate data (including no doubt that from NREVSS), it
should be possible within my sensor fusion framework to nowcast not only wILI, but also the
pathogen makeup of wILI. Appropriate data, however, is critical, and for syndromic data sources
this will require capturing the subtle differences between diseases in terms of symptoms, host
behaviors, demographics, timing, and geographic distributions.

Because epidemiological forecasting is still a relatively new endeavor, there are numerous
directions for future work. Since their respective inception for the 2014–2015 and 2013–2014 flu
contests, the Pinned Spline and Empirical Bayes systems of Chapter 5 have evolved significantly.
One potential future direction is to combine both of these systems to provide a single data-driven
forecasting framework. This would be especially helpful considering the relative benefits of
each system; Pinned Spline made strong point predictions, especially on short-term targets, and
Empirical Bayes excelled at producing reasonable distributional forecasts. A natural goal then is
to develop a single combined system with all of the benefits, and none of the drawbacks, of both
approaches. This is, in fact, one of the goals of the recently developed “Delphi-Stat” system.

There are many ways in which the Epicast method could be improved and extended. There
is an important relationship between a prediction, and the level of confidence in that prediction,
that I was unable to capture. I asked participants to give their best point predictions, but there
was no way for them to communicate their level of confidence in those predictions. I made the
implicit assumption that disagreement among user predictions implies lack of confidence, which
is probably true to some extent; the inverse however—that uniformity in predictions implies high
confidence—is clearly untrue. Consider as an example the case where everyone believes that
next week’s wILI has a 60% chance of staying the same as this week’s wILI, resulting in all
point predictions strongly concentrated on the same wILI, and the distributional spread being
very narrow, in contrast with the participants’ beliefs. It would be ideal to collect from each
user a more informative measure of their confidence. Second, an adaptive weighting scheme
could be used to improve forecasting accuracy, similar in spirit to the way user recommendations
and rankings are weighted, increasing accuracy in those settings [179, 180]. Preliminary results
discussed in Chapter 5 suggest that some participants may consistently be more or less accu-
rate than other participants, and an adaptive weighting scheme may benefit the overall forecast.
Finally, there is the issue of sample size in terms of the number of participants in the Epicast
“crowd”. Forecasts from our relatively small crowd produced remarkably accurate forecasts; it
is desirable, however, to have as large a crowd as possible. One way to achieve this may be, for
example, through gamification.

6.3 Final thoughts
The subject of this thesis is the past, present, and future of influenza, and to a lesser extent, that
of infectious diseases in general. But there has been a recurring theme throughout: combining all
available evidence to accomplish a given task. This manifested in Chapter 3 by way of assessing
plausibility of outcomes with respect to a set of empirically-derived targets. In my approach, I
used Mahalanobis distance to combine evidence across epidemiological and evolutionary targets
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which would have otherwise provided eight separate, likely correlated, and potentially conflict-
ing, figures of merit for each parameterization of generalized immunity. Combining evidence is
the major goal of Chapter 4. The primary challenge there, for which I used the sensor fusion
kernel of the Kalman filter, was to assimilate signals with varying noise, resolution, and avail-
ability. This theme appeared in disguise throughout Chapter 5. In Pinned Spline and Empirical
Bayes, we combine an enormous number of individual trajectories to build a single forecast; in
comparing Epicast with the other methods, I combine accuracy across all weeks, targets, and re-
gions to determine overall accuracy; and in Epicast, I combine point predictions from individual
users to produce a full probabilistic forecast—all of these examples in some way make use of the
multivariate normal likelihood. Data assimilation problems appear in a variety of settings, and a
working knowledge of the tools and methods for handling these situations can be very powerful.

The methods I developed in this thesis are specifically applied to influenza, dengue, and
chikungunya, but it is interesting to consider how they can be generalized for use in other set-
tings. The method for determining plausibility in Chapter 3 could be used, for example, to
determine the plausibility of other explanations of influenza’s phylodynamics—or the plausibil-
ity of any phenomenon that can be simulated but not directly measured, and for which indirect
empirical evidence is available. I used digital surveillance assimilation in Chapter 4 to estimate
influenza activity, but I can imagine using other digital data streams to estimate changing polit-
ical sentiment in real-time. I explored two particular generalizations in Chapter 5 by showing
how our three forecasting frameworks could be applied to forecast dengue and chikungunya in
tropical America. It is also worth noting that the Empirical Bayes system, at least, operates en-
tirely on trajectories; given historical wILI trajectories and the current, partial wILI trajectory,
it will forecast a new wILI trajectory—it is easy to imagine what it might do with, say, hourly
temperature readings or daily exchange rates in place of wILI. In this sense, Empirical Bayes
(and to some extent, Pinned Spline) can be seen as a general strategy for time series forecasting
of recurring events.

For all of our advances and achievements as a society in past centuries, influenza and other
infectious diseases continue to burden—and even threaten, in the case of pandemic. It is my
lofty hope that one day influenza will no longer be as ubiquitous within human populations as it
is today. This thesis is, I hope, one infinitesimally small step in that direction.
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Appendix A

Epidemiological forecasting: a spline
regression approach

The initial spline idea was due to Robert Tibshirani; Ryan Tibshirani, Roni Rosen-
feld, and Sangwon Hyun also contributed significantly to the implementation of this
idea. The spline framework was one of our entries in CDC’s 2014–2015 flu fore-
casting contest—this is the version described below. In parallel, Sangwon Hyun and
others used this framework to assess the risk of a dengue outbreak during the 2014
world cup in Brazil [181]. Later, Ryan Tibshirani and David Farrow (myself) imple-
mented a modified version of the spline framework as a component of a combined
entry in the OSTP dengue challenge. A manuscript for a forthcoming publication of
the Pinned Spline system is currently being prepared by Xiaotong Suo and others.

A.1 Intuition
The Pinned Spline approach was originally motivated by Epicast (Chapter 5). Consider the
forecasting interface as shown for example in Figure 5.4. Participants are shown the most up
to date—but incomplete—wILI trajectory for the current season, and they are also shown the
wILI trajectories of past seasons. One prediction strategy is to draw a smooth continuation of
the observed trajectory into the future such that the predicted trajectory matches the mean of past
trajectories. This strategy can be summarized with the following goals:

• Start with the partially observed trajectory of the current season. wILI on past weeks is
already known, up to reporting lag and revisions due to backfill; just report what has been
observed.

• Predict wILI on future weeks as wILI on the same weeks averaged across past seasons.
Use what is known about the shape of flu epidemics to predict wILI on the remaining
weeks of the current season.

• Smoothly interpolate between predictions of the past and of the future.

These goals can be accomplished with the following two steps. First, use regression with
a set of cubic basis splines to find a smooth trajectory that spans the entire season, matching
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known wILI in the past and expected wILI in the future. Second, pin down the portion of the
smooth trajectory corresponding to past weeks, replacing smoothed values with actual, known
wILI values. This is the essence of the Pinned Spline forecasting method.

A.2 Regression Splines
Splines and basis regression are advanced topics outside of the scope of this thesis. However,
I briefly summarize the main ideas below. I direct the interested reader to a primer on spline
regression [182] and to these textbooks for a much more thorough treatment of the subject [183,
184].

Splines are piecewise polynomial functions, named after the tool used by shipbuilders to pro-
duce wooden boards with smooth curves spanning fixed points. Basis splines, or “B-splines”,
are a class of splines that can be used in a regression setting to fit a smooth (maximally differ-
entiable) curve through a set of observed points. A B-spline is defined by two parameters: the
order, m, and the number of interior knots, N . The degree, n, of each of the spline’s constituent
polynomials is m − 1, and the total number of fixed points, including two endpoints, is, N + 2.
To find the B-spline that best fits the data, a set of spline basis functions are used as regression
covariates; the resulting B-spline is simply a linear combination of the individual basis splines.
The spline basis functions for a cubic (order four, degree three) B-spline with ten interior knots,
and also the best B-spline fit of this basis to sample wILI, are shown in Figure A.1.

Figure A.1: Spline basis functions and best fit B-spline. (A) Basis functions for B-
splines (m = 4, N = 10). (B) Observed wILI for 25 weeks of the 2014–2015 season
(black points); target wILI for the following 25 weeks (grey points); regression fit of
spline basis in panel A to wILI—a B-spline (blue line).

Given the spline basis, partially observed wILI, and mean wILI on future weeks, ordinary
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least squares (OLS) regression is used to find the best fit B-spline to the data. The observed por-
tion is then replaced with known wILI (pinning), and predictions are made based on measuring
the desired targets (e.g. Peak Week, Peak Height) on the resulting curve.

A.3 From point prediction to distributional forecast
The spline method described above produces a single trajectory—a prediction. As discussed in
Chapter 5, it is much more desirable (and was required for the flu contest) to produce a distribu-
tional forecast. This is done in the Pinned Spline method by bootstrapping [184].

In the case of flu, the signal we want to forecast, wILI, is inherently noisy. This can be
exploited to build a large set of predicted trajectories from which a forecast can then be derived.
The general method is as follows. Smooth the wILI trajectory of all of the past seasons, for
example using trendfiltering [170] as is done with the Empirical Bayes system (Figure 5.2).
The result of this smoothing is two pieces of information for each curve: a smooth curve that
interpolates the original wILI values and an estimate of the noise level, τ . Next, randomly
generate pseudo-observations by taking each smoothed past trajectory and adding Gaussian noise
with zero mean and scale equal to τ . With these new trajectories, run the original Pinned Spline
procedure.

When this process has been repeated many times, the result is a set of B-splines, each fit to
a random, but plausible, wILI trajectory. Similar to Epicast and Empirical Bayes, the point pre-
diction of each target is defined to be the median value of the target measured on all splines, and
the distributional forecast is the distribution of target values measures on all generated splines.

While this method is conceptually straightforward and simple to implement, the forecasts it
generated during the 2014–2015 flu season were not very accurate. In particular, this method
appears to suffer from general overconfidence. This was originally mitigated by blending the
posterior distribution with a uniform distribution over all outcomes, but this is not a permanent
solution. After the contest ended, one of our main goals was to improve the methodology to
provide better, less overconfident, distributional forecasts.

It should be noted, however, that the Pinned Spline point predictions were quite accurate.
In fact, accuracy of the Pinned Spline system approached that of Epicast in predicting the four
Lookahead targets, and Pinned Spline was generally more accurate on short-term point predic-
tions than our Empirical Bayes system.
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Appendix B

The Archefilter: combined nowcasting and
forecasting

B.1 Overview
The Archefilter is a framework that I designed to predict wILI on any week, given tentative wILI
values of past weeks and wILI of past seasons. It draws inspiration from our (significantly more
complex) statistical forecasting systems, Empirical Bayes (Subsection 5.3.1) and Pinned Spline
(Appendix A). The Archefilter produces forecasts on a weekly basis for the US nationally and
for all HHS and census regions.

B.2 The Archetype
A variety of approaches have been taken for forecasting influenza, including use of compartmen-
tal models, agent-based simulations, statistical methods, and a system based on collective human
judgment. Compartmental models have the advantage of mathematical simplicity, but are gener-
ally unable to recapitulate the empirical shape of influenza trajectories; agent-based simulations
better capture the epidemic trajectory, but make many strong mechanistic assumptions; statistical
methods make little to no mechanistic assumptions, but require a large amount of data to esti-
mate parameters; and human judgment methods produce very accurate short-term forecasts, but
require a large investment of human time and effort. I attempt to capture the benefits, and avoid
the drawbacks, of these approaches within the ARCH framework—with a focus on nowcasting
and short-term forecasting. Based on the assumption that future epidemics will look something
like past epidemics, the ARCH kernel consists of a description of the canonical shape of an
influenza epidemic—an archetype. The resulting archetype is: simple, parameterized only by
timing and magnitude; lightweight, requiring no simulation; empirical, making no mechanistic
assumptions; and accurate, especially in the short-term. This methodology, based only on em-
pirical data, is in theory directly applicable to other diseases with regularly occurring outbreaks,
even if there is only a small amount of available historical data.

The archetype influenza trajectory is built through the following process, illustrated in Fig-
ure B.1:
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1. Split the historical wILI trajectory into individual epidemic trajectories spanning from
week 30 of one first year to week 29 of the next year.

2. Model and remove excess wILI on holiday weeks.

3. Smooth trajectories (for example, moving average, kernel smoother, or trend filtering). For
simplicity, I use a Gaussian kernel smoother with a bandwidth of 2 weeks.

4. Rotate both the original and the smoothed trajectories such that the peak falls in the center
of the season (week 3).

5. Calculate the week-wise mean wILI for both the original and smoothed trajectories.

6. Interpolate between original mean (middle of the season) and the smoothed mean (early
and late in the season); I use the Hann function for this purpose.

Figure B.1: Graphical representation of the construction of the US national in-
fluenza archetype. Far left: wILI trajectory for past seasons. Middle left: original
(top) and smoothed (bottom) trajectories after attempting to remove the holiday effect.
Middle right: original (top) and smoothed (bottom) trajectories aligned such that the
peak falls in the middle of the season. Far right: the archetype (black) and its credible
interval (gray).

As discussed in Chapter 4, the holiday effect is a term we use to describe the aberrant increase
in reported wILI during the major holiday season. Unlike the additive approach in SAR3, here
I find a multiplicative constant for the last 3 weeks of the old year and the first week of the new
year. To determine this constant, I use derivative-free optimization [158] to find the wILI mul-
tipliers that achieve an approximately constant first derivative of wILI on these weeks. In other
words, I find values with which to multiply wILI such that wILI on the holiday weeks is as near
as possible (in a least-squares sense) to a linear interpolation of wILI between the week preced-
ing the holiday to the week proceeding the holiday. The resulting trajectory—the archetype—is
a process model for wILI, similar in some respect to an SIR trajectory. The difference, however,
is that the archetype is an empirical description the the flu process rather than a mechanistic one.
An archetype curve is constructed separately for the 19 US regions and nationally (20 total).
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B.3 The Archefilter

Defining the archetype trajectory is just the first half of the ARCH method; the second half is to
produce a prediction of future wILI. To do this, I find a transformed version of the archetype
curve that best explains the partially observed wILI trajectory of the current season. These
transformations are a shift in time (rotation, or circular shift, along the x-axis) and a scale in
magnitude (a multiplication on the y-axis). To assess how well a particular transformed instance
of the archetype explains observed wILI, I use the multivariate normal likelihood as explained
below.

The best-fit instance of the archetype will fit very closely to observed wILI—especially wILI
on recent weeks. It will also fit reasonably well to the mean of past seasons; this is to prevent
selection of an archetype instance that over-fits observed wILI at the cost of making unrealistic
predictions about future wILI. An example of such fits are shown in Figure B.2. The goal of
forecasting, however, is not to produce a singe possible future, but to produce a distribution over
possible futures. This is done in the ARCH system the same as in the Empirical Bayes system:
by building a posterior distribution of curves and reporting the statistics of that distribution.

First, a prior distribution must be created. I define this beforehand as the space of all
archetype curves that have been transformed by shifts of up to 10 weeks in either direction (uni-
formly) and scales from 33% to 300% (uniformly). To get from the prior to the posterior, I need
to more precisely define the likelihood function. As in Empirical Bayes, I use the multivariate
normal likelihood. On runtime week wk, with observed (past) and imputed (future) wILI values
(y ∈ R52), the weight assigned to any sample from the prior (s ∈ R52) is:

weight−1 ∝ (y − s)TΣ−1(y − s).

Here, however, Σ is carefully constructed to meet certain expectations. These are: (a) the
recent past (5 weeks) should match observed wILI very closely, (b) the more distant past should
match observed wILI, up to the uncertainty of backfill, and (c) the future should match the week-
wise mean wILI of past seasons, up to variability in historical wILI. I define each of these more
concretely next and show how these ideas are encoded in Σ. To begin with, Σ = I (52× 52).

To meet condition “a”, I multiply rows of Σ by 10 everywhere except for the rows corre-
sponding to the most recent 5 weeks. That is, rows 1..(wk − 5) and rows wk..52. This reflects
my strong desire to match the recent past, relative to the distant past and the future. I do this
because I want to focus primarily on nowcasting and short-term forecasting.

To meet condition “b”, I divide rows of Σ by the empirical variance of backfill in the region.
I compute the backfill variance (separately for each region) by comparing finalized wILI values
to preliminary values. I do this separately for each “lag” time: the age, in weeks, of preliminary
wILI. I do this because backfill variance decreases as lag time increases. In the interest of running
time, I limit this to lags of 1–10 weeks; anything older than 10 weeks I assume has the backfill
variance of 10 weeks. Finally, I divide the rows of Σ which correspond to the past (that is, rows
1..(wk − 1)) by the respective variance of backfill. My reasoning here is that observed values in
the recent past—which are subject to the largest backfill—should not be relied on as heavily as
observed values in the more distant past. In other words, avoid overly penalizing archetypes that
deviate from observed values if that deviation can be explained by backfill.
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Figure B.2: Archetpye transformations and best fit. Partially observed wILI for the
current season is shown in black. Archetype curves, transformed by randomly selected
shifts in time and scales in height, are shown as thin grey curves; better fits are darker,
and worse fits are lighter. The single best fit instance of a transformed archetype is
shown in blue.

To meet condition “c”, I divide rows of Σ by the empirical week-wise variance of wILI of
past seasons in the region. For all future weeks (i ∈ [wk..52]), I calculate the variance of wILI
curves (w) from each of the n(= 11) past non-pandemic seasons (s ∈ [2003..2008, 2010..2014]),
as (using array index notation):

vari =
1

n

n∑
j=1

(wsj [i]− w̄[i])2.

Then, as before, I divide the rows of Σ which correspond to the future (that is, rows wk..52)
by the respective weekly variance of historical wILI, vari. My reasoning is that some parts of
the season are inherently more variable than others. Namely, the middle of the season is highly
variable, but the end of the season is relatively static. I want to penalize deviations from the
norm, under the assumption that the current season will turn out something like past seasons.
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For example, it is difficult to say that 3 wILI units above the mean is unrealistic in January;
however, 3 wILI units above the mean in April is quite unrealistic based on the non-pandemic
seasons we have observed so far. In other words, I want to constrain my posterior samples by
what could plausibly happen in the future, and one way to describe what is plausible is by mean
and variance of wILI on past seasons.

Having defined the prior, Σ, and the likelihood, I now describe the process of sampling from
the posterior. First, I scan a grid over shift and scale parameter space. I then normalize the
resulting weight values to form a proper probability mass function (PMF) over parameter space,
as illustrated in Figure B.3.

Figure B.3: Parameter space of archetypes fit to wILI. Archetypes are instantiated
with shifts ranging from -10 to +10 weeks and scales ranging from 33% to 300%. Each
instance is compared to observed wILI (in the past) and average wILI of past seasons
(in the future), with weight determined by multivariate normal likelihood. Weights are
normalized to form a proper PMF, and this is plotted on the grid shown. Weights are
colored such that good fits are lighter and poor fits are darker.
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Next, I draw samples from this PMF; each sample describes a particular instantiation of the
archetype. I store each sample and its associated weight. Finally, I report distributions over target
values. For the CDC flu contest, these were: Peak Week, Peak Height, and 1–4 Week Lookaheads
(see Chapter 5 for much more information). For point predictions, I report the weighted median
of the target values measured on each posterior sample. For distributional forecasts, I report
a Gaussian distribution with mean and variance calculated on weighted target values of each
sample. To prevent overconfidence and to allow for surprises, I use two post-processing methods
to spread the probability among the reported bins. First, I smooth the distributional probability
bins with Gaussian kernel smoother (bandwidth = 1 bin). Second, I blend the bins with a uniform
distribution with weight chosen such that no bin is assigned probability less than 0.002.

B.4 Use within the Kalman filter

The archetype was originally intended to be a process model for use in the Kalman filter (KF).
Usage of the KF was however entirely obviated and superseded by the development of my sensor
fusion framework in Chapter 4. Though I no longer use this method, I describe it here for
completeness.

The problem at hand is one of tracking: given a model of the flu process and noisy estimates
of wILI, produce an optimal estimate of finalized wILI. With the archetype as a process model
and TWTR, WIKI, and SAR3 (see Chapter 4) as noisy estimates of wILI, I have everything
needed for using the KF.

There is one important caveat, however: the “process” (archetype) is highly nonlinear. One
solution is to break away from the traditional formulation of the KF and use a relaxed version
that can handle nonlinearities: the Unscented Kalman filter (UKF) [185]. The UKF provides a
very general interface through which the process can be queried. To fit this interface, the process
must take as input some set of parameters and produce as output a state estimate (wILI in this
case). This is exactly what the archetype does; given shift, scale, and current week, the wILI
estimate is the point on the shifted and scaled archetype instance one week in the future.

I use the UKF as implemented in the python software package filterpy [186, 187]. Usage is
straightforward; on any given week, I provide these things:

1. Prior over states (mean x and variance P )

2. Process variance (Q)

3. Measurement covariance (R)

4. Measurements (TWTR, WIKI, and SAR3; z)

5. Process model (archetype)

I define the prior mean x to be the most recently published value of wILI. I define the prior
variance P to be the backfill variance, as previously discussed, at a lag of one week. I roughly
estimate, based on intuition and visual inspection, the process variance P to be 0.25 (standard
deviation of 0.5 wILI). Similarly, I roughly estimate, based on intuition and visual inspection,
the measurement covariance Q to be the diagonal matrix of variances for TWTR, WIKI, and
SAR3: 0.49, 0.25, and 0.25 (standard deviations of 0.7, 0.5, and 0.5 wILI), respectively. z is
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simply the vector of TWTR, WIKI, and SAR3 readouts for the current week. The process model
is the previously described archetype. Note that the archetype is the epidemic curve model and
the archefilter is the forecasting system.

With all pieces in place, I invoke the UKF to produce an approximately optimal estimate
of the posterior state: wILI on the next week—a nowcast. With the nowcast in hand, I use the
archefilter to build a forecast—a distribution over possible futures instead of a single possible
future. Thanks to the nowcast, this forecast has the advantage of “seeing” one additional data
point.

Going forward, the tracking (nowcasting) problem is essentially solved, at least for the pur-
poses of the archefilter. Instead of using the UFK to manually produce a nowcast, I can simply
use the nowcast that the sensor fusion framework produces. This decoupling of nowcasting and
forecasting is beneficial for a number of reasons. For example, the two problems, though they
may appear similar on the surface, are quite different; it makes sense then from an engineering
standpoint to split the tasks into separate projects. Much more importantly, the nowcast not only
is useful for the archefilter, but also is helpful for forecasting systems in general and is potentially
suitable for distribution to the general public.

113



114



Bibliography

[1] World Health Organization. World development report 1993: investing in health. Commun
Dis Rep CDR Wkly. 1993;3:137.

[2] Armstrong GL. Trends in Infectious Disease Mortality in the United States During the
20th Century. JAMA. 1999 jan;281(1):61.

[3] Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of
disease and risk factors, 2001: systematic analysis of population health data. The Lancet.
2006 may;367(9524):1747–1757.

[4] Pinner RW. Trends in Infectious Diseases Mortality in the United States. JAMA. 1996
jan;275(3):189.

[5] Cox NJ, Subbarao K. Global epidemiology of influenza: past and present. Annual review
of medicine. 2000 Jan;51:407–21.

[6] Influenza (Seasonal). World Health Organization; 2016. Available from: http://www.
who.int/mediacentre/factsheets/fs211/en/. Visited on: 2016-03-25.

[7] Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, Hoffman RMB, van Meers-
bergen R, Huizingh J, Wanningen P, Verspuij J, de Man M, Ding Z, Apetri A, Kükrer B,
Sneekes-Vriese E, Tomkiewicz D, Laursen NS, Lee PS, Zakrzewska A, Dekking L, Tol-
boom J, Tettero L, van Meerten S, Yu W, Koudstaal W, Goudsmit J, Ward AB, Meijberg
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